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Abstract

Recent studies have highlighted the vulnerability of deep neural networks (DNNs) to

adversarial examples - inputs formed by applying small but intentionally worst-case

perturbations to examples from the dataset, such that the perturbed inputs result

in the model outputting incorrect answers with high confidence. Gradient-based

optimization is used to find said adversarial examples by jointly minimizing the per-

turbation while maximizing the probability that the generated example causes the

target model to misclassify. This approach can be readily applied in the white-box

case, where the attacker has complete access to the target model and thus can com-

pute the gradients via backpropagation. We extend such approaches to the black-box

case, where the attacker is only given query access and therefore incapable of directly

computing the gradients. We introduce ZOO, which uses the finite difference method

to estimate the gradients for optimization from the output scores. Furthermore, we

also improve the state-of-the-art in the no-box case, where the attacker is not even

capable of querying the target model. We introduce EAD, which incorporates L1

minimization in order to encourage sparsity in the perturbation, hence generating

more robust adversarial examples in the white-box case which can transfer to un-

seen models. Through experimental results attacking state-of-the-art models trained

on the MNIST, CIFAR-10, and ImageNet datasets, we validate the effectiveness of

the proposed attacks. In addition, we demonstrate that the proposed attacks can

successfully attack recently proposed defenses in these limited access settings. We

show that ZOO can succeed against the state-of-the-art ImageNet defense, Ensemble

Adversarial Training, while EAD can succeed against the state-of-the-art MNIST de-

fense, the Madry Defense Model, and input transformation defenses, such as Feature

Squeezing.
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1 Background

Much of this section is derived from the Deep Learning Book [5]. Please refer for

further reading.

1.1 Gradient-based Optimization

Optimization refers to the task of either minimizing or maximizing some function

f(x) by altering x. Most optimization problems are usually phrased in terms of

minimizing f(x). Maximization may be accomplished via a minimization algorithm

by minimizing −f(x).

The function we want to minimize or maximize is called the objective function. When

minimizing, this function is also called the cost function, the loss function, or the error

function. The altered value which minimizes or maximizes f(x) is denoted as x∗.

1.1.1 First-order Optimization

Supposed we have a function y = f(x), where both x and y are real numbers. The

derivative of this function is denoted as f ′(x) or as dy
dx

. The derivative f ′(x) gives the

slope of f(x) at the point x. In other words, it specifies how to scale a small change

in the input in order to obtain the corresponding change in the output: f(x + ϵ) ≈

f(x) + ϵf ′(x).

The derivative is therefore useful for minimizing a function because it tells us how to

change x in order to make a small improvement in y. We can thus reduce f(x) by

moving x in small steps with the opposite sign of the derivative. This technique is

called gradient descent [6], and is widely used for optimization in machine learning.

When f ′(x) = 0, the derivative does not provide any information on which direction

to move. Points where f ′(x) = 0 are known as critical points or stationary points. A
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local minimum is a point where f(x) is lower than at all neighboring points, so it is no

longer possible to decrease f(x) by making infinitesimal steps. A local minimum is a

point where f(x) is higher than at all neighboring points, so it is no longer possible to

increase f(x) by making infinitesimal steps. Some critical points are neither maxima

nor minima. These are known as saddle points, points which have neighbors where

f(x) is both higher and lower than that of the points themselves.

A point that obtains the absolute lowest value of f(x) is a global minimum. It

is possible for there to be only one global minimum or multiple global minima of

the function. It is also possible for there to be local minima that are not globally

optimal. In the context of machine learning, in particular deep learning, functions

are often optimized which have many local minima that are not optimal, and many

saddle points surrounded by very flat regions. Therefore, practitioners often settle

for finding a value of f that is very low, but not necessarily minimal in the formal

sense [5].

Functions which have multiple inputs are often optimized: f : Rn → R. For such

functions, we must make use of the concept of partial derivatives. The partial deriva-

tive ∂
∂xi

f(x) measures how f changes as only the variable xi increases at point x. The

gradient generalizes the notion of the derivative to the case where the derivative is

with respect to a vector: the gradient of f is the vector containing all of the partial

derivatives, denoted ∇xf(x). Element i of the gradient is the partial derivative of

f with respect to xi. In multiple dimensions, critical points are points where every

element of the gradient is equal to zero. As discussed, decreasing f by moving in

the direction of the negative gradient is called gradient descent, otherwise known as

steepest descent. The method proposes a new point as follows:

x′ = x− ϵ∇xf(x) (1)
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where ϵ is the learning rate, a positive scalar determining the size of the step. ϵ is

often set to a small constant, or found via a line search, where several values of ϵ

are tested and one is chosen which results in the smallest objective function value.

Optimization algorithms that use only the gradient, such as gradient descent, are

called first-order optimization algorithms.

Gradient descent converges when every element of the gradient is zero (or, in practice,

very close to zero). In some cases, we can avoid running the iterative algorithm by

jumping directly to the critical point by solving the equation ∇xf(x) = 0 for x.

Although gradient descent is limited to optimization in continuous spaces, the general

concept of repeatedly making a small move (that is approximately the best small

move) towards better configurations can be generalized to discrete spaces. Ascending

an objective function of discrete parameters is called hill climbing [7].

1.1.2 Second-order Optimization

Sometimes we need to find all of the partial derivatives of a function whose input

and output are both vectors. The matrix containing all such partial derivatives is

known as a Jacobian matrix. Specifically, if we have a function f : Rm → Rn, then

the Jacobian matrix J ∈ Rnxm of f is defined such that Ji,j =
∂

∂xj
f(x)i.

We are also sometimes interested in a derivative of a derivative. This is known as

a second derivative. For example, for a function f : Rn → R, the derivative with

respect to xi of the derivative of f with respect to xj is denoted as ∂2

∂xi∂xj
f . In a

single dimension, we can denote d2

dx2f by f ′′(x). The second derivative tells us how

the first derivative will change as we vary the input. This is important because it

tells us whether a gradient step will cause as much of an improvement as we would

expect based on the gradient alone.We can think of the second derivative as measuring

curvature.

3



Suppose we have a quadratic function (many functions that arise in practice are not

quadratic but can be approximated well as quadratic, at least locally). If such a

function has a second derivative of zero, then there is no curvature. It is a perfectly

flat line, and its value can be predicted using only the gradient. If the gradient is 1,

then we can make a step of size ϵ along the negative gradient, and the cost function

will decrease by ϵ. If the second derivative is negative, the function curves downward,

so the cost function will actually decrease by more than ϵ. Finally, if the second

derivative is positive, the function curves upward, so the cost function can decrease

by less than ϵ. In summary, different forms of curvature affect the relationship between

the value of the cost function predicted by the gradient and the true value.

When a function has multiple input dimensions, there are many second derivatives.

These derivatives can be collected together into a matrix called the Hessian matrix.

The Hessian matrix H(f)(x) is defined such that H(f)(x)i,j = ∂2

∂xi∂xj
f(x). Equiva-

lently, the Hessian is the Jacobian of the gradient.

The second derivative can be used to determine whether a critical point is a local

maximum, a local minimum, or saddle point. Recall that on a critical point, f ′(x) = 0.

When the second derivative f ′′(x) > 0, the critical point x is a local minimum.

Similarly, when f ′′(x) < 0, the critical point x is a local maximum. This is known as

the second derivative test. Unfortunately, when f ′′(x) = 0, the test is inconclusive; x

may be a saddle point, or a part of a flat region.

In multiple dimensions, there is a different second derivative for each direction at a

single point. The condition number of the Hessian at this point measures how much

the second derivatives differ from each other. The condition number can be computed

by taking the ratio of the magnitude of the largest and smallest eigenvalue. When the

Hessian has a poor condition number (large), gradient descent performs poorly. This

is because in one direction, the derivative increases rapidly, while in another direction,
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it increases slowly. Gradient descent is unaware of this change in the derivative so

it does not know that it needs to explore preferentially in the direction where the

derivative remains negative for longer. It also makes it difficult to choose a good step

size. The step size must be small enough to avoid overshooting the minimum and

going uphill in directions with strong positive curvature. This usually means that

the step size is too small to make significant progress in other directions with less

curvature.

This issue can be resolved by using information from the Hessian matrix to guide the

search. The simplest method for doing so is known as Newton’s method. Newton’s

method is based on using a second-order Taylor series expansion to approximate f(x)

near some point x0. If we then solve for the critical point of this function, we obtain:

x∗ = x0 −H(f)(x0)
−1∇xf(x0) (2)

When f is a positive definite quadratic function, Newton’s method consists of applying

the above equation once to jump to the minimum of the function directly. When f is

not truly quadratic but can be locally approximated as a positive definite quadratic,

Newton’s method consists of applying the above equation multiple times. Iteratively

updating the approximation and jumping to the minimum of the approximation can

reach the critical point much faster than gradient descent would. This is a useful

property near a local minimum, but it can be a harmful property near a saddle point.

Newton’s method is only appropriate when the nearby critical point is a minimum (all

the eigenvalues of the Hessian are positive), whereas gradient descent is not attracted

to saddle points unless the gradient points toward them [5].

Optimization algorithms that use the Hessian matrix, such as Newton’s method, are

called second-order optimization algorithms [8].

The optimization algorithms employed in machine learning, and in particular deep

learning, are applicable to a wide variety of functions, but come with almost no
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guarantees. This is due to the fact that the family of functions used are non-convex

(the Hessian is not positive semidefinite everywhere). Convex functions are well-

behaved because they lack saddle points and all of their local minima are necessarily

global minima. However, most problems in primarily deep learning are difficult to

express in terms of convex optimization.

1.1.3 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(x) over all possible

values of x. Instead we may wish to find the maximal or minimal value of f(x) for

values of x in some set S. This is known as constrained optimization. Points x that

lie within the set S are called feasible points in constrained optimization terminology.

For example, we often wish to find a solution that is small in some sense. A common

approach in such situations is to impose a norm constraint, such as ∥x∥ ≤ 1.

One simple approach to constrained optimization is simply to modify gradient descent

taking the constraint into account. If we use a small constant step size ϵ, we can make

gradient descent steps, then project the result back into S. If we use a line search,

we can search only over step sizes ϵ that yield new x points that are feasible, or we

can project each point on the line back into the constraint region. When possible,

this method can be made more efficient by projecting the gradient into the tangent

space of the feasible region before taking the step or beginning the line search [9].

A more sophisticated approach is to design a different, unconstrained optimization

problem whose solution can be converted into a solution to the original, constrained

optimization problem. The Karush-Kuhn Tucker (KKT) approach provides a very

general solution to constrained optimization. Please refer to [10,11] for further detail.
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1.2 Machine Learning

A machine learning algorithm is an algorithm that is able to learn from data. More

precisely, a computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance at tasks in T ,

as measured by P , improves with experience E [12].

1.2.1 Tasks

Machine learning allows us to tackle tasks that are too difficult to solve with fixed

programs written and designed by human beings. From a scientific and philosophical

point of view, machine learning is interesting because developing our understanding of

machine learning entails developing our understanding of the principles that underlie

intelligence.

Machine learning tasks are usually described in terms of how the machine learning

system should process an example. An example is a collection of features that have

been quantitatively measured from some object or event that we want the machine

learning system to process. We typically represent an example as a vector x ∈ Rn

where each entry xi of the vector is another feature. For example, the features of an

image are usually the values of the pixels in the image.

Many kinds of tasks can be solved with machine learning. Some of the most common

tasks include classification, where the computer program is asked to specify which of

k categories some input belongs to, and regression, where the computer program is

asked to predict a numerical value given some input. An example of a classification

task is object recognition, where the input is an image (usually described as a set of

pixel brightness values), and the output is a numeric code identifying the object in

the image. Object recognition is the same basic technology that allows computers to

recognize faces [13], which can be used to automatically tag people in photo collections
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and allow computers to interact more naturally with their users. An example of a

regression task is the prediction of the expected claim amount that an insured person

will make (used to set insurance premiums), or the prediction of future prices of

securities. These kinds of predictions are also used in algorithmic trading.

1.2.2 Performance Measures

In order to evaluate the abilities of a machine learning algorithm, we must design

a quantitative measure of its performance. Usually this performance measure P is

specific to the task T being carried out by the system.

1.2.2.1 Classification

For tasks such as classification, we often measure the accuracy of the model. Ac-

curacy is just the proportion of examples for which the model produces the correct

output. However when dealing with skewed datasets, when some classes are much

more frequent than others, it is preferred to evaluate the performance of a classifier

by looking at the confusion matrix. The general idea is to count the number of times

instances of class A are classified as class B. Each row in a confusion matrix represents

an actual class, while each column represents a predicted class. A perfect classifier

would only have true positives and true negatives, so its confusion matrix would have

nonzero values only on its main diagonal.

Precision and recall give more concise quantitative metrics on the performance of the

classifier. The precision is the accuracy of positive predictions, and is computed by

dividing the number of true positives by the sum of the number of true positives

and the number of false positives. A trivial way to have perfect precision is to make

one single positive prediction and ensure it is correct. This would not be very useful

since the classifier would ignore all but one positive instance. Due to this, precision

is typically used alongside the recall metric, which is the ratio of positive instances
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that are correctly detected by the classifier. It is computed by dividing the number

of true positives by the sum of the number of true positives and the number of false

negatives. It is often convenient to combine precision and recall into a single metric

called the F1 score, in particular to have a simple way to compare classifiers.

The F1 score is the harmonic mean of precision and recall. Whereas the regular mean

treats all values equally, the harmonic mean gives much more weight to low values.

As a result, the classifier will only get a high F1 score if both recall and precision are

high. The F1 score favors classifiers that have similar precision and recall. This is

not necessarily the desired outcome, in some contexts precision is more significant,

and in some contexts recall is more significant. For example, if the task was to detect

videos that are safe for kids, a classifier which rejects many satisfactory videos (low

recall) but keeps only safe ones (high precision) is preferred over a classifier which

has a much higher recall but lets a few unsafe videos through. On the other hand, if

the task was to detect shoplifters on surveillance images, low precision is manageable

as long as the recall is high. Unfortunately, both precision and recall cannot be high:

increasing precision reduces recall, and vice versa. This is called the precision/recall

trade-off.

To understand this trade-off, consider a binary classifier making its classification

decisions. For each instance, it computes a score based on a decision function, and

if that score is greater than a threshold, it assigns the instance to the positive class,

or else it assigns it to the negative class. Increasing the threshold increases precision

but decreases recall. Conversely, lowering the threshold increases recall and reduces

precision. Therefore, to select a good precision/recall trade-off, one can vary the

threshold and plot precision directly against recall.

An alternative to the precision/recall curve is the receiver operating characteristic

(ROC) curve. It is very similar, but instead of plotting precision versus recall, the

9



ROC curve plots the true positive rate (another term for recall) against the false

positive rate. The FPR is the ratio of negative instances that are incorrectly classified

as positive. It is equal to one minus the true negative rate, which is the ratio of

negative instances that are correctly classified as negative. The TNR is also called

specificity. Hence the ROC curve plots sensitivity (recall) versus 1-specificity. One

way to compare classifiers is to measure the area under the curve (AUC). A perfect

classifier will have an AUC equal to 1, whereas a purely random classifier will have

an AUC equal to 0.5.

1.2.2.2 Regression

When choosing a performance metric for a regression task, the major question one

asks is whether to penalize the system more if it frequently makes medium-sized

mistakes or if it rarely makes very large mistakes. If the first option is desired, the

practitioner should choose to use the Root Mean Square Error (RMSE) criterion. If

the second option is desired, the practitioner should choose to use the Mean Absolute

Error (MAE).

Both the RMSE and the MAE are ways to measure the distance between two vectors:

the vector of predictions and the vector of target values. Computing the root of a sum

of squares (RMSE) corresponds to the Euclidean norm, or the L2 norm. Computing

the sum of absolutes (MAE) corresponds to the L1 norm, or the Manhattan norm

(because it measures the distance between two points in a city if one only travels

along orthogonal city blocks). More generally, the Lp norm of a vector v containing n

elements is defined as: ∥v∥k = (|v0|k+|v1|k+ ...+|vn|k)
1
k . L0 gives only the cardinality

of the vector (the number of elements), and L∞ gives the maximum absolute value

in the vector.

The higher the norm index, the more it focuses on large values and neglects small

ones. This is why the RMSE is more sensitive to outliers than the MAE. But when
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outliers are exponentially rare (like in a bell-shaped curve), the RMSE performs very

well and is generally preferred.

1.2.3 Types of Experience

Machine learning algorithms can be broadly categorized as unsupervised or supervised

by what kind of experience they are allowed to have during the learning process.

Most learning algorithms can be understood as being allowed to experience an entire

dataset. A dataset is a collection of many examples, where examples are also called

data points. An example of a dataset is the classic Iris dataset [14], a collection of

measurements of different parts of 150 iris plants. Each individual plant corresponds

to one example. The features within each example are the measurements of each of

the parts of the plant: the sepal length, sepal width, petal length and petal width.

The dataset also records which species each plant belonged to. Three different species

are represented in the dataset.

Unsupervised learning algorithms experience a dataset containing many features, then

learn useful properties of the structure of this dataset. Some unsupervised learning

algorithms perform clustering, which consists of dividing the dataset into clusters of

similar examples. Another useful task is visualization, where the algorithm is fed a lot

of complex and unlabeled data, and outputs a 2D or 3D representation of the data

that can easily be plotted. These algorithms try to preserve as much structure as

they can (e.g., trying to keep separate clusters in the input space from overlapping in

the visualization), so the user can understand how the data is organized and perhaps

identify unsuspected patterns. A related task is dimensionality reduction, in which

the goal is to simplify the data without losing too much information. One simple

way to do this is to merge several correlated features into one, more sophisticated

algorithms exist as well.
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Supervised learning algorithms experience a dataset containing features, but each

example is also associated with a label or target. Typical tasks performed in this

case are classification and regression. For example, the Iris dataset is annotated with

the species of each iris plant. A supervised learning algorithm can study the Iris

dataset and learn to classify iris plants into three different species based on their

measurements.

Roughly speaking, unsupervised learning involves observing several examples of a

random vector x, and attempting to implicitly or explicitly learn the probability

distribution p(x), or some interesting properties of that distribution, while supervised

learning involves observing several examples of a random vector x and an associated

value or vector y, and learning to predict y from x, usually by estimating p(y|x).

The term supervised learning originates from the view of the target y being provided

by an instructor or teacher who shows the machine learning system what to do. In

unsupervised learning, there is no instructor or teacher, and the algorithm must learn

to make sense of the data without this guide.

Other variants of the learning paradigm are possible. For example, in semi- supervised

learning, some examples include a supervision target but others do not. Some machine

learning algorithms do not just experience a fixed dataset. For example, reinforcement

learning algorithms interact with an environment, so there is a feedback loop between

the learning system and its experiences. The learning system, called an agent in this

context, can observe the environment, select and perform actions, and get rewards

in return (or penalties in the form of negative rewards). It must then learn by itself

the best strategy, called a policy, to get the most reward over time. A policy defines

what action the agent should choose when it is in a given situation.
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1.2.4 Generalization

The central challenge in machine learning is that we must perform well on new,

previously unseen inputs, not just those on which our model was trained. The ability

to perform well on previously unobserved inputs is called generalization.

Typically, when training a machine learning model, we have access to a training set,

we can compute some error measure on the training set called the training error,

and we reduce this training error. So far, what we have described is simply an

optimization problem. What separates machine learning from optimization is that

we want the generalization error, also called the test error, to be low as well. The

generalization error is defined as the expected value of the error on a new input. Here

the expectation is taken across different possible inputs, drawn from the distribution

of inputs we expect the system to encounter in practice.

We typically estimate the generalization error of a machine learning model by mea-

suring its performance on a test set of examples that were collected separately from

the training set. The factors determining how well a machine learning algorithm will

perform are is its ability to: 1) make the training error small, and 2) make the gap

between training and test error small.

These two factors correspond to the two central challenges in machine learning: un-

derfitting and overfitting. Underfitting occurs when the model is not able to obtain

a sufficiently low error value on the training set. Overfitting occurs when the gap

between the training error and test error is too large.

We can control whether a model is more likely to overfit or underfit by altering its

capacity. Informally, a model’s capacity is its ability to fit a wide variety of functions.

Models with low capacity may struggle to fit the training set. Models with high

capacity can overfit by memorizing properties of the training set that do not serve

them well on the test set. Machine learning algorithms will generally perform best
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when their capacity is appropriate for the true complexity of the task they need

to perform and the amount of training data they are provided with. Models with

insufficient capacity are unable to solve complex tasks. Models with high capacity

can solve complex tasks, but when their capacity is higher than needed to solve the

present task they may overfit.

Capacity is not determined only by the choice of model. The model specifies which

family of functions the learning algorithm can choose from when varying the pa-

rameters in order to reduce a training objective. This is called the representational

capacity of the model. In many cases, finding the best function within this family is

a very difficult optimization problem. In practice, the learning algorithm does not

actually find the best function, but merely one that significantly reduces the training

error. These additional limitations, such as the imperfection of the optimization al-

gorithm, mean that the learning algorithm’s effective capacity may be less than the

representational capacity of the model family.

While simpler functions are more likely to generalize (to have a small gap between

training and test error) we must still choose a sufficiently complex hypothesis to

achieve low training error. Typically, training error decreases until it asymptotes to

the minimum possible error value as model capacity increases (assuming the error

measure has a minimum value). Typically, generalization error has a U-shaped curve

as a function of model capacity.

Non-parametric models reach the most extreme case of arbitrarily high capacity.

Sometimes, non-parametric models are just theoretical abstractions (such as an al-

gorithm that searches over all possible probability distributions) that cannot be im-

plemented in practice. However, practical non-parametric models can be designed by

making their complexity a function of the training set size. One example of such an

algorithm is nearest neighbor regression. Unlike linear regression, a parametric model
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which learns a function described by a parameter vector whose size is finite and fixed

before any data is observed, the nearest neighbor regression model simply stores the

X and y from the training set. When asked to classify a test point x, the model looks

up the nearest entry in the training set and returns the associated regression target.

If the algorithm is allowed to break ties by averaging the yi values for all Xi that are

tied for nearest, then this algorithm is able to achieve the minimum possible training

error on any regression dataset.

The ideal model is an oracle that simply knows the true probability distribution that

generates the data. Even such a model will still incur some error on many problems,

because there may still be some noise in the distribution. The error incurred by an

oracle making predictions from the true distribution p(x, y) is called the Bayes error.

Training and generalization error vary as the size of the training set varies. Expected

generalization error can never increase as the number of training examples increases.

For non-parametric models, more data yields better generalization until the best

possible error is achieved. Any fixed parametric model with less than optimal capacity

will asymptote to an error value that exceeds the Bayes error. Note that it is possible

for the model to have optimal capacity and yet still have a large gap between training

and generalization error. In this situation, we may be able to reduce this gap by

gathering more training examples.

1.2.4.1 Regularization

The no free lunch theorem [15] implies that we must design our machine learning

algorithms to perform well on a specific task. We do so by building a set of preferences

into the learning algorithm. When these preferences are aligned with the learning

problems we ask the algorithm to solve, it performs better. One method of modifying

a learning algorithm is to increase or decrease the model’s representational capacity
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by adding or removing functions from the hypothesis space of solutions the learning

algorithm is able to choose.

The behavior of our algorithm is strongly affected not just by how large we make the

set of functions allowed in its hypothesis space, but by the specific identity of those

functions. For example, linear regression has a hypothesis space consisting of the set

of linear functions of its input. These linear functions can be very useful for problems

where the relationship between inputs and outputs truly is close to linear. They are

less useful for problems that behave in a very nonlinear fashion. We can thus control

the performance of our algorithms by choosing what kind of functions we allow them

to draw solutions from, as well as by controlling the amount of these functions.

We can also give a learning algorithm a preference for one solution in its hypothesis

space to another. This means that both functions are eligible, but one is preferred.

The unpreferred solution will be chosen only if it fits the training data significantly

better than the preferred solution.

For example, we can modify the training criterion for linear regression to include

weight decay. To perform linear regression with weight decay, we minimize a sum

J(w) comprising both the mean squared error on the training and a criterion that

expresses a preference for the weights to have a smaller squared L2 norm. Specifically,

J(w) = MSEtrain + λwTw (3)

where λ is a value chosen ahead of time that controls the strength of our preference

for smaller weights. When λ = 0, we impose no preference, and larger λ forces the

weights to become smaller. Minimizing J(w) results in a choice of weights that make

a tradeoff between fitting the training data and being small. This gives us solutions

that have a smaller slope, or put weight on fewer of the features.

More generally, we can regularize a model that learns a function f(x; θ) by adding

a penalty called a regularizer to the cost function. In the case of weight decay, the
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regularizer is wTw. There are many other ways of expressing preferences for different

solutions, both implicitly and explicitly.

Expressing preferences for one function over another is a more general way of con-

trolling a model’s capacity than including or excluding members from the hypothesis

space. We can think of excluding a function from a hypothesis space as expressing an

infinitely strong preference against that function. Regularization is any modification

we make to a learning algorithm that is intended to reduce its generalization error

but not its training error.

1.2.4.2 Hyperparameters and Validation Sets

Most machine learning algorithms have several settings that we can use to control the

behavior of the learning algorithm. These settings are called hyperparameters. The

values of hyperparameters are not adapted by the learning algorithm itself. The λ

value used to control the strength of weight decay is an example of a hyperparameter.

Sometimes a setting is chosen to be a hyperparameter that the learning algorithm

does not learn because it is difficult to optimize. More frequently, the setting must

be a hyperparameter because it is not appropriate to learn that hyperparameter on

the training set. This applies to all hyperparameters that control model capacity. If

learned on the training set, such hyperparameters would always choose the maximum

possible model capacity, resulting in overfitting.

To solve this problem, we need a validation set of examples that the training algorithm

does not observe. As the test set is used to estimate the generalization error of a

learner, it is important that the test examples are not used in any way to make choices

about the model, including its hyperparameters. Therefore, we always construct the

validation set from the training data. Specifically, we split the training data into two

disjoint subsets. One of these subsets is used to learn the parameters. The other
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subset is our validation set, used to estimate the generalization error during or after

training, allowing for the hyperparameters to be updated accordingly. Typically, one

uses about 80% of the training data for training and 20% for validation. After all

hyperparameter optimization is complete, the generalization error may be estimated

using the test set.

Dividing the dataset into a fixed training set and a fixed test set can be problematic

if it results in the test set being small. A small test set implies statistical uncertainty

around the estimated average test error, making it difficult to claim that algorithm

A works better than algorithm B on the given task. When the dataset is too small,

alternative procedures enable one to use all of the examples in the estimation of

the mean test error, at the price of increased computational cost. These procedures

are based on the idea of repeating the training and testing computation on different

randomly chosen subsets or splits of the original dataset. The most common of these

is the k-fold cross-validation procedure, in which a partition of the dataset is formed

by splitting it into k non-overlapping subsets. The test error may then be estimated

by taking the average test error across k trials. On trial i, the i-th subset of the data

is used as the test set and the rest of the data is used as the training set.

1.2.5 Stochastic Gradient Descent

Gradient descent is used to minimize cost functions by updating the model param-

eters. However, a recurring problem in machine learning is that large training sets

are necessary for good generalization, but large training sets are also more compu-

tationally expensive. The cost function used by a machine learning algorithm often

decomposes as a sum over training examples of some per-example loss function. For

these additive cost functions, the computational cost of gradient descent is linear in

the number of examples. As the training set size grows to billions of examples, the

time to take a single gradient step becomes prohibitively long.
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The insight of stochastic gradient descent is that the gradient is an expectation. The

expectation may be approximately estimated using a small set of samples. Specifically,

on each step of the algorithm, we can sample a minibatch of examples drawn uniformly

from the training set. The minibatch size m′ is typically chosen to be a relatively

small number of examples, ranging from 1 to a few hundred. Crucially, m′ is usually

held fixed as the training set size m grows. We may fit a training set with billions of

examples using updates computed on only a hundred examples.

For a fixed model size, the cost per SGD update does not depend on the training set

size m. In practice, we often use a larger model as the training set size increases, but

we are not forced to do so. The number of updates required to reach convergence

usually increases with training set size. However, as m approaches infinity, the model

will eventually converge to its best possible test error before SGD has sampled every

example in the training set. Increasing m further will not extend the amount of

training time needed to reach the model’s best possible test error. From this point of

view, one can argue that the asymptotic cost of training a model with SGD is O(1)

as a function of m. Enhancements to SGD used in deep learning will be discussed in

the subsequent section.

1.3 Deep Learning

The performance of simple machine learning algorithms depends heavily on the rep-

resentation of the data they are given. This dependence on representations is a

general phenomenon that appears throughout computer science and even daily life.

In computer science, operations such as searching a collection of data can proceed ex-

ponentially faster if the collection is structured and indexed intelligently. People can

easily perform arithmetic on Arabic numerals, but find arithmetic on Roman numer-

als much more time-consuming. It is not surprising that the choice of representation

has an enormous effect on the performance of machine learning algorithms.
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Many artificial intelligence tasks can be solved by designing the right set of features

to extract for that task, then providing these features to a simple machine learning

algorithm. For example, a useful feature for speaker identification from sound is an

estimate of the size of the speaker’s vocal tract. It therefore gives a strong clue as to

whether the speaker is a man, woman, or child.

However, for many tasks, it is difficult to know what features should be extracted. For

example, suppose that we would like to write a program to detect cars in photographs.

We know that cars have wheels, so we might like to use the presence of a wheel as

a feature. Unfortunately, it is difficult to describe exactly what a wheel looks like in

terms of pixel values. A wheel has a simple geometric shape but its image may be

complicated by shadows falling on the wheel, the sun glaring off the metal parts of

the wheel, the fender of the car or an object in the foreground obscuring part of the

wheel, and so on.

One solution to this problem is to use machine learning to discover not only the map-

ping from representation to output but also the representation itself. This approach

is known as representation learning. Learned representations often result in much

better performance than can be obtained with hand-designed representations. They

also allow AI systems to rapidly adapt to new tasks, with minimal human interven-

tion. A representation learning algorithm can discover a good set of features for a

simple task in minutes, or a complex task in hours. Manually designing features for

a complex task requires a great deal of human time and effort; it can take decades

for an entire community of researchers.

When designing features or algorithms for learning features, our goal is usually to

separate the factors of variation that explain the observed data. In this context, we

use the word “factors” simply to refer to separate sources of influence; the factors are

usually not combined by multiplication. Such factors are often not quantities that are
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directly observed. Instead, they may exist either as unobserved objects or unobserved

forces in the physical world that affect observable quantities. They may also exist as

constructs in the human mind that provide useful simplifying explanations or inferred

causes of the observed data. They can be thought of as concepts or abstractions that

help us make sense of the rich variability in the data. When analyzing a speech

recording, the factors of variation include the speaker’s age, their sex, their accent

and the words that they are speaking. When analyzing an image of a car, the factors

of variation include the position of the car, its color, and the angle and brightness of

the sun.

A major source of difficulty in many real-world artificial intelligence applications is

that many of the factors of variation influence every single piece of data we are able

to observe. The individual pixels in an image of a red car might be very close to

black at night. The shape of the car’s silhouette depends on the viewing angle. Most

applications require us to disentangle the factors of variation and discard the ones

that we do not care about.

Of course, it can be very difficult to extract such high-level, abstract features from

raw data. Many of these factors of variation, such as a speaker’s accent, can be iden-

tified only using sophisticated, nearly human-level understanding of the data. When

it is nearly as difficult to obtain a representation as to solve the original problem,

representation learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by introducing

representations that are expressed in terms of other, simpler representations. Deep

learning allows the computer to build complex concepts out of simpler concepts. It

achieves great power and flexibility by learning to represent the world as a nested

hierarchy of concepts, with each concept defined in relation to simpler concepts, and

more abstract representations computed in terms of less abstract ones.
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1.3.1 Motivation: The Curse of Dimensionality

Many machine learning problems become exceedingly difficult when the number of

dimensions in the data is high. This phenomenon is known as the curse of dimen-

sionality. Of particular concern is that the number of possible distinct configurations

of a set of variables increases exponentially as the number of variables increases.

To understand the issue, let us consider that the input space is organized into a grid.

We can describe low-dimensional space with a low number of grid cells that are mostly

occupied by the data. When generalizing to a new data point, we can usually tell

what to do simply by inspecting the training examples that lie in the same cell as the

new input. If we wish to classify an example, we can return the most common class

of training examples in the same cell. If we are doing regression we can average the

target values observed over the examples in that cell. But what about the cells for

which we have seen no example? Because in high-dimensional spaces the number of

configurations is huge, much larger than our number of examples, a typical grid cell

has no training example associated with it. How could we possibly say something

meaningful about these new configurations? Many traditional machine learning al-

gorithms simply assume that the output at a new point should be approximately

the same as the output at the nearest training point. This assumption is called the

smoothness prior or local constancy prior. This prior states that the function we learn

should not change very much within a small region.

Many simpler algorithms rely exclusively on this prior to generalize well, and as a

result they fail to scale to the statistical challenges involved in solving AI-level tasks.

Deep learning introduces additional priors in order to reduce the generalization error

on sophisticated tasks. The core idea in deep learning is that we assume that the

data was generated by the composition of factors or features, potentially at multiple

levels in a hierarchy. This apparently mild assumption allow an exponential gain in
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the relationship between the number of examples and the number of regions that

can be distinguished. The exponential advantages conferred by the use of deep,

distributed representations counter the exponential challenges posed by the curse of

dimensionality.

1.3.2 Feedforward Networks

The goal of a feedforward network is to approximate some function f ∗. For example,

for a classifier, y = f ∗(x) maps an input x to a category y. A feedforward network

defines a mapping y = f(x; θ) and learns the value of the parameters θ that result in

the best function approximation. These models are called feedforward because infor-

mation flows through the function being evaluated from x, through the intermediate

computations used to define f , and finally to the output y.

Feedforward neural networks are called networks because they are typically repre-

sented by composing together many different functions, commonly through a chain

structure. The overall length of the chain gives the depth of the model, and each

member of the chain is a layer. The learning algorithm must decide how to use these

layers to best implement an approximation of f ∗. Because the training data does not

show the desired output for each of these layers, these layers are called hidden layers.

Finally, these networks are called neural because they are loosely inspired by neu-

roscience. Each hidden layer of the network is typically vector-valued. The dimen-

sionality of these hidden layers determines the width of the model. Each element of

the vector may be interpreted as playing a role analogous to a neuron. Each unit

resembles a neuron in the sense that it receives input from many other units and

computes its own activation value. The idea of using many layers of vector-valued

representation is drawn from neuroscience. The choice of the functions fi(x) used to

compute these representations is also loosely guided by neuroscientific observations

about the functions that biological neurons compute.
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Neural networks use an affine transformation controlled by learned parameters, fol-

lowed by a fixed, nonlinear function called an activation function, to describe the

features: h = g(W Tx + c), where W provides the weights of a linear transforma-

tion and c the biases. In modern neural networks, the default recommendation for

the activation function is to use the rectified linear unit or ReLU [16–18] defined

by g(z) = max{0, z}. Generalizations of rectified linear units exist, such as leaky

ReLU [19], parametric ReLU or PReLU [20], and maxout units [21].

1.3.3 Gradient-based Learning

Designing and training a neural network is not much different from training any

other machine learning model with gradient descent. The largest difference is that

the nonlinearity of a neural network causes most interesting loss functions to become

non-convex. This means that neural networks are usually trained by using iterative,

gradient-based optimizers that merely drive the cost function to a very low value.

Convex optimization converges starting from any initial parameters, while stochastic

gradient descent applied to non-convex loss functions has no such convergence guar-

antee, and is sensitive to the values of the initial parameters. For feedforward neural

networks, it is important to initialize all weights to small random values. The biases

may be initialized to zero or to small positive values.

1.3.3.1 Cost Functions

An important aspect of the design of a deep neural network is the choice of the cost

function. In most cases, our parametric model defines a distribution p(y|x; θ) and we

simply use the principle of maximum likelihood. This means we use the cross-entropy

between the training data and the model’s predictions as the cost function. The total

cost function used to train a neural network will often combine one of the primary cost

functions described here with a regularization term. The weight decay approach used
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for linear models is also directly applicable to deep neural networks and is among the

most popular regularization strategies. More advanced regularization strategies exist

as well, such as dataset augmentation, early stopping, dropout [22], and adversarial

training [23, 24].

The cross-entropy loss is given by,

J(θ) = −Ex,y∼pdata log pmodel(y|x) (4)

The specific form of the cost function changes from model to model, depending on

the specific form of log pmodel. For example, if pmodel = N(y; f(x; θ), I), assumed to

be Gaussian, we recover the mean square cost.

In order to train neural networks successfully, the gradient of the cost function must

be large and predictable enough to serve as a good guide for the learning algorithm.

Functions that saturate (become very flat) undermine this objective because they

make the gradient become very small. In many cases this happens because the acti-

vation functions used to produce the output of the hidden units or the output units

saturate. The negative log-likelihood helps to avoid this problem for many models.

Many output units involve an exp function that can saturate when its argument is

very negative. The log function in the negative log-likelihood cost function undoes

the exp of often used output units.

Alternative cost functions to the cross-entropy loss can be derived. For example, if

we could train on infinitely many samples from the true data generating distribution,

minimizing the mean squared error cost function gives a function that predicts the

mean of y for each value of x. Likewise, in that scenario minimizing the mean absolute

error cost function gives a function that predicts the median of y for each value of

x. Unfortunately, mean squared error and mean absolute error often lead to poor

results when used with gradient-based optimization. Some output units that saturate

produce very small gradients when combined with these cost functions. This is the
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major reason why the cross-entropy cost function is more popular than mean squared

error or mean absolute error, even when it is not necessary to estimate an entire

distribution p(y|x).

1.3.3.2 Output Units

Linear Units One simple kind of output unit is an output unit based on an affine

transformation with no nonlinearity. These are often just called linear units. Because

linear units do not saturate, they pose little difficulty for gradient-based optimization

algorithms and may be used with a wide variety of optimization algorithms.

Sigmoid Units Many tasks require predicting the value of a binary variable y.

Classification problems with two classes can be cast in this form. The maximum-

likelihood approach is to define a Bernoulli distribution over y conditioned on x. A

Bernoulli distribution is defined by just a single number. The neural net needs to

predict only P (y = 1|x). For this number to be a valid probability, it must lie in

the interval [0,1]. To ensure there is always a strong gradient whenever the model

has a wrong answer, the approach typically used is based on using sigmoid output

units combined with maximum likelihood. When we use other loss functions, such

as mean squared error, the loss can saturate anytime the logistic sigmoid function

saturates. The gradient can shrink too small to be useful for learning whenever this

happens, whether the model has the correct answer or the incorrect answer. For

this reason, maximum likelihood is almost always the preferred approach to training

sigmoid output units.

Softmax Units Any time we wish to represent a probability distribution over a

discrete variable with n possible values, we may use the softmax function. This can
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be seen as a generalization of the sigmoid function which was used to represent a

probability distribution over a binary variable.

1.3.3.3 Backpropagation

When we use a feedforward neural network to accept an input x and produce an

output ŷ, information flows forward through the network. The inputs x provide the

initial information that then propagates up to the hidden units at each layer and

finally produces ŷ. This is called forward propagation. During training, forward

propagation can continue onward until it produces a scalar cost J(θ). The backprop-

agation algorithm [25] allows the information from the cost to then flow backwards

through the network, in order to compute the gradient.

Computing an analytical expression for the gradient is straightforward, but numer-

ically evaluating such an expression can be computationally expensive. The back-

propagation algorithm does so using a simple and inexpensive procedure.

The chain rule of calculus is used to compute the derivatives of functions formed

by composing other functions whose derivatives are known. Backpropagation is an

algorithm that computes the chain rule, with a specific order of operations that is

highly efficient. Using the chain rule, it is straightforward to write down an algebraic

expression for the gradient of a scalar with respect to any node in the computational

graph that produced that scalar. However, actually evaluating that expression in a

computer introduces some extra considerations. Specifically, many subexpressions

may be repeated several times within the overall expression for the gradient. Any

procedure that computes the gradient will need to choose whether to store these

subexpressions or to recompute them several times. In some cases, computing the

same subexpression twice would simply be wasteful. For complicated graphs, there

can be exponentially many of these wasted computations, making a naive implemen-

tation of the chain rule infeasible. In other cases, computing the same subexpression
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twice could be a valid way to reduce memory consumption at the cost of higher

runtime.

The amount of computation required for performing backpropagation scales linearly

with the number of edges in the computational graph, where the computation for each

edge corresponds to computing a partial derivative (of one node with respect to one

of its parents) as well as performing one multiplication and one addition. The back-

propagation algorithm is designed to reduce the number of common subexpressions

without regard to memory. Specifically, it performs on the order of one Jacobian

product per node in the graph. Backpropagation thus avoids the exponential explo-

sion in repeated subexpressions.

Backpropagation computes the gradient with respect to each parent of node z by

multiplying the current gradient by the Jacobian of the operation that produced z.

We continue multiplying by Jacobians traveling backwards through the graph in this

way until we reach x. For any node that may be reached by going backwards from

z through two or more paths, we simply sum the gradients arriving from different

paths at that node.

If the neural network cost function is roughly chain-structured, which is often true,

backpropagation has O(N) cost. This is far better than the naive approach, which

might need to execute exponentially many nodes. To avoid recomputation, we can

think of backpropagation as a table-filling algorithm that takes advantage of storing

intermediate results. Each node in the graph has a corresponding slot in the table to

store the gradient for that node. By filling in these table entries in order, backprop-

agation avoids repeating many common subexpressions. This table-filling strategy is

commonly called dynamic programming.

The backpropagation algorithm is a special case of a broader class of techniques

called reverse mode accumulation, which is an automatic differentiation strategy.
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When the number of outputs of the graph is larger than the number of inputs, it is

sometimes preferable to use another form of automatic differentiation called forward

mode accumulation. This also avoids the need to store the values and gradients for

the whole graph, trading off computational efficiency for memory.

1.3.3.4 Initialization Strategies

Training algorithms for deep learning models are usually iterative in nature and thus

require the user to specify some initial point from which to begin the iterations.

Moreover, training deep models is a sufficiently difficult task that most algorithms

are strongly affected by the choice of initialization. The initial point can determine

whether the algorithm converges at all, with some initial points being so unstable that

the algorithm encounters numerical difficulties and fails altogether. When learning

does converge, the initial point can determine how quickly learning converges and

whether it converges to a point with high or low cost. Also, points of comparable

cost can have wildly varying generalization error, and the initial point can affect the

generalization as well.

Modern initialization strategies are simple and heuristic. Designing improved initial-

ization strategies is a difficult task because neural network optimization is not yet well

understood. Perhaps the only property known with complete certainty is that the

initial parameters need to “break symmetry” between different units. If two hidden

units with the same activation function are connected to the same inputs, then these

units must have different initial parameters. If they have the same initial parameters,

then a deterministic learning algorithm applied to a deterministic cost and model will

constantly update both of these units in the same way. Even if the model or training

algorithm is capable of using stochasticity to compute different updates for different

units (for example, if one trains with dropout), it is usually best to initialize each

unit to compute a different function from all of the other units. This may help to
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make sure that no input patterns are lost in the null space of forward propagation

and no gradient patterns are lost in the null space of backpropagation. The goal of

having each unit compute a different function motivates random initialization of the

parameters.

Typically, we set the biases for each unit to heuristically chosen constants, and ini-

tialize only the weights randomly. We almost always initialize all the weights in the

model to values drawn randomly from a Gaussian or uniform distribution. The choice

of Gaussian or uniform distribution does not seem to matter very much, but has not

been exhaustively studied. The scale of the initial distribution, however, does have a

large effect on both the outcome of the optimization procedure and on the ability of

the network to generalize.

Larger initial weights will yield a stronger symmetry breaking effect, helping to avoid

redundant units. They also help to avoid losing signal during forward or back-

propagation through the linear component of each layer—larger values in the matrix

result in larger outputs of matrix multiplication. Initial weights that are too large

may, however, result in exploding values during forward propagation or backprop-

agation. Large weights may also result in extreme values that cause the activation

function to saturate, causing complete loss of gradient through saturated units. These

competing factors determine the ideal initial scale of the weights.

The perspectives of regularization and optimization can give very different insights

into how we should initialize a network. The optimization perspective suggests that

the weights should be large enough to propagate information success- fully, but some

regularization concerns encourage making them smaller. The use of an optimization

algorithm such as stochastic gradient descent that makes small incremental changes

to the weights and tends to halt in areas that are nearer to the initial parameters

(whether due to getting stuck in a region of low gradient, or triggering some early
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stopping criterion based on overfitting) expresses a prior that the final parameters

should be close to the initial parameters.

Some heuristics are available for choosing the initial scale of the weights. [26] suggest

using a normalized initialization designed to compromise between the goal of initializ-

ing all layers to have the same activation variance and the goal of initializing all layers

to have the same gradient variance. The formula is derived using the assumption that

the network consists only of a chain of matrix multiplications, with no nonlinearities.

Real neural networks obviously violate this assumption, but many strategies designed

for the linear model perform reasonably well on its nonlinear counterparts.

The approach for setting the biases must be coordinated with the approach for setting

the weights. Setting the biases to zero is compatible with most weight initialization

schemes.

1.3.3.5 Faster Optimizers

Stochastic gradient descent (SGD) and its variants are probably the most used opti-

mization algorithms for machine learning in general and for deep learning in partic-

ular. As discussed, it is possible to obtain an unbiased estimate of the gradient by

taking the average gradient on a minibatch of m examples drawn i.i.d from the data

generating distribution.

A crucial parameter for the SGD algorithm is the learning rate. Previously, we

have described SGD as using a fixed learning rate ϵ. In practice, it is necessary to

gradually decrease the learning rate over time. This is because the SGD gradient

estimator introduces a source of noise (the random sampling of m training examples)

that does not vanish even when we arrive at a minimum. By comparison, the true

gradient of the total cost function becomes small and then 0 when we approach and

reach a minimum using batch gradient descent, so batch gradient descent can use a
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fixed learning rate. In practice, it is common to decay the learning rate linearly until

iteration τ , and after that it is common to leave ϵ constant.

The most important property of SGD and related minibatch or online gradient- based

optimization is that computation time per update does not grow with the number

of training examples. This allows convergence even when the number of training

examples becomes very large. For a large enough dataset, SGD may converge to

within some fixed tolerance of its final test set error before it has processed the entire

training set. Despite this property, SGD can sometimes be quite slow, and thus faster

optimizers have been developed.

Momentum The method of momentum [27] is designed to accelerate learning,

especially in the face of high curvature, small but consistent gradients, or noisy gra-

dients. The momentum algorithm accumulates an exponentially decaying moving

average of past gradients and continues to move in their direction.

Formally, the momentum algorithm introduces a variable v that plays the role of

velocity, it is the direction and speed at which the parameters move through param-

eter space. The velocity is set to an exponentially decaying average of the negative

gradient. The name momentum derives from a physical analogy, in which the neg-

ative gradient is a force moving a particle through parameter space, according to

Newton’s laws of motion. Momentum in physics is mass times velocity. In the mo-

mentum learning algorithm, we assume unit mass, so the velocity vector v may also

be regarded as the momentum of the particle. A hyperparameter α determines how

quickly the contributions of previous gradients exponentially decay. The velocity v

accumulates the gradient elements. The larger α is relative to ϵ, the more previous

gradients affect the current direction.
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Previously, the size of the step was simply the norm of the gradient multiplied by

the learning rate. Now, the size of the step depends on how large and how aligned

a sequence of gradients are. The step size is largest when many successive gradients

point in exactly the same direction.

Nesterov Momentum [28] introduced a variant of the momentum algorithm that

was inspired by Nesterov’s accelerated gradient method [29]. The difference between

Nesterov momentum and standard momentum is where the gradient is evaluated.

With Nesterov momentum the gradient is evaluated after the current velocity is ap-

plied. Thus one can interpret Nesterov momentum as attempting to add a correction

factor to the standard method of momentum.

AdaGrad The AdaGrad algorithm individually adapts the learning rates of all

model parameters by scaling them inversely proportional to the square root of the

sum of all of their historical squared values [30]. The parameters with the largest

partial derivative of the loss have a correspondingly rapid decrease in their learning

rate, while parameters with small partial derivatives have a relatively small decrease

in their learning rate. The net effect is greater progress in the more gently sloped

directions of parameter space.

In the context of convex optimization, the AdaGrad algorithm enjoys some desirable

theoretical properties. However, empirically it has been found that, for training deep

neural network models, the accumulation of squared gradients from the beginning

of training can result in a premature and excessive decrease in the effective learning

rate. AdaGrad performs well for some but not all deep learning models.

RMSProp The RMSProp algorithm [31] modifies AdaGrad to perform better in

the non-convex setting by changing the gradient accumulation into an exponentially
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weighted moving average. AdaGrad is designed to converge rapidly when applied

to a convex function. When applied to a non-convex function to train a neural

network, the learning trajectory may pass through many different structures and

eventually arrive at a region that is a locally convex bowl. AdaGrad shrinks the

learning rate according to the entire history of the squared gradient and may have

made the learning rate too small before arriving at such a convex structure. RMSProp

uses an exponentially decaying average to discard history from the extreme past so

that it can converge rapidly after finding a convex bowl, as if it were an instance of

the AdaGrad algorithm initialized within that bowl.

Empirically, RMSProp has been shown to be an effective and practical optimization

algorithm for deep neural networks. It is currently one of the go-to optimization

methods being employed routinely by deep learning practitioners.

Adam Adam [32] is yet another adaptive learning rate optimization algorithm. Its

name derives from the phrase “adaptive moments.” In the context of the earlier al-

gorithms, it is perhaps best seen as a variant on the combination of RMSProp and

momentum with a few important distinctions. First, in Adam, momentum is incorpo-

rated directly as an estimate of the first order moment (with exponential weighting) of

the gradient. The most straightforward way to add momentum to RMSProp is to ap-

ply momentum to the rescaled gradients. The use of momentum in combination with

rescaling does not have a clear theoretical motivation. Second, Adam includes bias

corrections to the estimates of both the first-order moments (the momentum term)

and the (uncentered) second-order moments to account for their initialization at the

origin. RMSProp also incorporates an estimate of the (uncentered) second-order mo-

ment, however it lacks the correction factor. Thus, unlike in Adam, the RMSProp

second-order moment estimate may have high bias early in training. Adam is gen-
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erally regarded as being fairly robust to the choice of hyperparameters, though the

learning rate sometimes needs to be changed from the suggested default.

In the current state of deep learning, Adam is the optimizer of choice.

1.3.4 Convolutional Networks

Convolutional networks [33] is a specialized kind of neural network for processing

data that has a known, grid-like topology. Examples include time-series data, which

can be thought of as a 1D grid taking samples at regular time intervals, and image

data, which can be thought of as a 2D grid of pixels. The name “convolutional

neural network” indicates that the network employs a mathematical operation called

convolution. Convolution is a specialized kind of linear operation. Convolutional

networks are simply neural networks that use convolution in place of general matrix

multiplication in at least one of their layers.

1.3.4.1 Convolution

Convolution leverages three important ideas that can help improve a machine learn-

ing system: sparse interactions, parameter sharing and equivariant representations.

Moreover, convolution provides a means for working with inputs of variable size.

Traditional neural network layers use matrix multiplication by a matrix of parameters

with a separate parameter describing the interaction between each input unit and

each output unit. This means every output unit interacts with every input unit.

Convolutional networks, however, typically have sparse interactions (also referred to

as sparse connectivity or sparse weights). This is accomplished by making the kernel

smaller than the input. For example, when processing an image, the input image

might have thousands or millions of pixels, but we can detect small, meaningful

features such as edges with kernels that occupy only tens or hundreds of pixels.
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This means that we need to store fewer parameters, which both reduces the memory

requirements of the model and improves its statistical efficiency. It also means that

computing the output requires fewer operations. These improvements in efficiency are

usually quite large. If there are m inputs and n outputs, then matrix multiplication

requires m×n parameters and the algorithms used in practice have O(m×n) runtime

(per example). If we limit the number of connections each output may have to k, then

the sparsely connected approach requires only k×n parameters and O(k×n) runtime.

Parameter sharing refers to using the same parameter for more than one function in a

model. In a traditional neural net, each element of the weight matrix is used exactly

once when computing the output of a layer. It is multiplied by one element of the

input and then never revisited. As a synonym for parameter sharing, one can say

that a network has tied weights, because the value of the weight applied to one input

is tied to the value of a weight applied elsewhere. In a convolutional neural net, each

member of the kernel is used at every position of the input (except perhaps some

of the boundary pixels, depending on the design decisions regarding the boundary).

The parameter sharing used by the convolution operation means that rather than

learning a separate set of parameters for every location, we learn only one set. This

does not affect the runtime of forward propagation, it is still O(k×n), but it does

further reduce the storage requirements of the model to k parameters. Convolution

is thus dramatically more efficient than dense matrix multiplication in terms of the

memory requirements and statistical efficiency.

In the case of convolution, the particular form of parameter sharing causes the layer

to have a property called equivariance to translation. To say a function is equivariant

means that if the input changes, the output changes in the same way. When processing

time series data, this means that convolution produces a sort of timeline that shows

when different features appear in the input. If we move an event later in time in

the input, the exact same representation of it will appear in the output, just later in
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time. Similarly with images, convolution creates a 2-D map of where certain features

appear in the input. If we move the object in the input, its representation will move

the same amount in the output. This is useful for when we know that some function

of a small number of neighboring pixels is useful when applied to multiple input

locations. For example, when processing images, it is useful to detect edges in the

first layer of a convolutional network. The same edges appear more or less everywhere

in the image, so it is practical to share parameters across the entire image. In some

cases, we may not wish to share parameters across the entire image. For example,

if we are processing images that are cropped to be centered on an individual’s face,

we probably want to extract different features at different locations, the part of the

network processing the top of the face needs to look for eyebrows, while the part of

the network processing the bottom of the face needs to look for a chin.

1.3.4.2 Pooling

A typical layer of a convolutional network consists of three stages. In the first stage,

the layer performs several convolutions in parallel to produce a set of linear activa-

tions. In the second stage, each linear activation is run through a nonlinear activa-

tion function, such as the rectified linear activation function. This stage is sometimes

called the detector stage. In the third stage, we use a pooling function to modify the

output of the layer further. A pooling function replaces the output of the net at a cer-

tain location with a summary statistic of the nearby outputs. For example, the max

pooling operation reports the maximum output within a rectangular neighborhood.

In all cases, pooling helps to make the representation become approximately invari-

ant to small translations of the input. Invariance to translation means that if we

translate the input by a small amount, the values of most of the pooled outputs do

not change. Invariance to local translation can be a very useful property if we care

more about whether some feature is present than exactly where it is. For example,
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when determining whether an image contains a face, we need not know the location

of the eyes with pixel-perfect accuracy, we just need to know that there is an eye on

the left side of the face and an eye on the right side of the face. In other contexts, it

is more important to preserve the location of a feature.

For many tasks, pooling is essential for handling inputs of varying size. For example,

if we want to classify images of variable size, the input to the classification layer must

have a fixed size. This is usually accomplished by varying the size of an offset between

pooling regions so that the classification layer always receives the same number of

summary statistics regardless of the input size. For example, the final pooling layer

of the network may be defined to output four sets of summary statistics, one for each

quadrant of an image, regardless of the image size.

1.3.4.3 Convolution and Pooling

One key insight is that convolution and pooling can cause underfitting. Like any prior,

convolution and pooling are only useful when the assumptions made by the prior are

reasonably accurate. If a task relies on preserving precise spatial information, then

using pooling on all features can increase the training error. Some convolutional

network architectures [34] are designed to use pooling on some channels but not on

other channels, in order to get both highly invariant features and features that will

not underfit when the translation invariance prior is incorrect. When a task involves

incorporating information from very distant locations in the input, then the prior

imposed by convolution may be inappropriate.

1.3.5 Recurrent Networks

Recurrent networks are a family of neural networks for processing sequential data.

Much as a convolutional network is a neural network that is specialized for processing

a grid of values X such as an image, a recurrent neural network is a neural network
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that is specialized for processing a sequence of values x1, ..., xn. Just as convolutional

networks can readily scale to images with large width and height, and some convo-

lutional networks can process images of variable size, recurrent networks can scale to

much longer sequences than would be practical for networks without sequence-based

specialization. Most recurrent networks can also process sequences of variable length.

Parameter sharing makes it possible to extend and apply the model to examples

of different forms (different lengths, here) and generalize across them. A recurrent

neural network shares the same weights across several time steps.

One way to draw an RNN is as an unfolded computational graph, in which each

component is represented by many different variables, with one variable per time

step, representing the state of the component at that point in time. Computing the

gradient through a recurrent neural network is straightforward, one simply applies

the generalized back-propagation algorithm to the unrolled computational graph. No

specialized algorithms are necessary. Gradients obtained by back-propagation may

then be used with any general-purpose gradient-based techniques to train an RNN.

1.3.5.1 RNN Architectures

Bidirectional RNNs [35] combine an RNN that moves forward through time beginning

from the start of the sequence with another RNN that moves backward through time

beginning from the end of the sequence. This allows the output units to compute a

representation that depends on both the past and the future but is most sensitive to

the input values around time t, without having to specify a fixed-size window around

t.

Encoder-decoder RNNs [36] can be trained to map an input sequence to an output

sequence which is not necessarily of the same length. The idea is straightforward: (1)

an encoder or reader or input RNN processes the input sequence. The encoder emits

the context C, usually as a simple function of its final hidden state. (2) a decoder
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or writer or output RNN is conditioned on that fixed-length vector to generate the

output sequence Y = (y1, ..., yn). One clear limitation of this architecture is when the

context C output by the encoder RNN has a dimension that is too small to properly

summarize a long sequence. This phenomenon was observed by [37] in the context

of machine translation. They proposed to make C a variable-length sequence rather

than a fixed-size vector. Additionally, they introduced an attention mechanism that

learns to associate elements of the sequence C to elements of the output sequence.

1.3.5.2 LSTM and Other Gated RNNs

The basic problem of learning long-term dependencies is that gradients propagated

over many stages tend to either vanish (most of the time) or explode (rarely, but with

much damage to the optimization). Even if we assume that the parameters are such

that the recurrent network is stable (can store memories, with gradients not explod-

ing), the difficulty with long-term dependencies arises from the exponentially smaller

weights given to long-term interactions (involving the multiplication of many Jaco-

bians) compared to short-term ones. The vanishing and exploding gradient problem

for RNNs was independently discovered by separate researchers [38, 39]. One may

hope that the problem can be avoided simply by staying in a region of parameter

space where the gradients do not vanish or explode. Unfortunately, in order to store

memories in a way that is robust to small perturbations, the RNN must enter a region

of parameter space where gradients vanish. Specifically, whenever the model is able

to represent long term dependencies, the gradient of a long term interaction has ex-

ponentially smaller magnitude than the gradient of a short term interaction. It does

not mean that it is impossible to learn, but that it might take a very long time to

learn long-term dependencies, because the signal about these dependencies will tend

to be hidden by the smallest fluctuations arising from short-term dependencies.

40



Gated RNNs are based on the idea of creating paths through time that have deriva-

tives that neither vanish nor explode. The long short-term memory (LSTM) model’s [40]

core contribution is introducing self-loops to produce paths where the gradient can

flow for long durations. By making the weight of the self-loop gated (controlled by an-

other hidden unit), the time scale of integration can be changed dynamically. Instead

of a unit that simply applies an element-wise nonlinearity to the affine transformation

of inputs and recurrent units, LSTM recurrent networks have “LSTM cells” that have

an internal recurrence (a self-loop), in addition to the outer recurrence of the RNN.

Each cell has the same inputs and outputs as an ordinary recurrent network, but has

more parameters and a system of gating units that controls the flow of information.

An input feature is computed with a regular artificial neuron unit. Its value can be

accumulated into the state if the sigmoidal input gate allows it. The state unit has a

linear self-loop whose weight is controlled by the forget gate. The output of the cell

can be shut off by the output gate. All the gating units have a sigmoid nonlinearity,

while the input unit can have any squashing nonlinearity.

Gated recurrent units or GRUs [36] differ from LSTMs in that a single gating unit

simultaneously controls the forgetting factor and the decision to update the state

unit.

2 Adversarial Examples

In many cases, neural networks have begun to reach human performance when evalu-

ated on an i.i.d. test set. It is natural therefore to wonder whether these models have

obtained a true human-level understanding of these tasks. In order to probe the level

of understanding a network has of the underlying task, we can search for examples

that the model misclassifies. [23] found that even neural networks that perform at

human level accuracy have a nearly 100% error rate on examples that are intention-
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ally constructed by using an optimization procedure to search for an input x′ near

a data point x such that the model output is very different at x′. In many cases,

x′ can be so similar to x that a human observer cannot tell the difference between

the original example and the adversarial example, but the network can make highly

different predictions.

The lack of robustness exhibited by deep neural networks (DNNs) to adversarial

examples has raised serious concerns for security-critical applications, including traffic

sign identification and malware detection, among others. Moreover, moving beyond

the digital space, researchers have shown that these adversarial examples are still

effective in the physical world at fooling DNNs [41, 42]. Due to the robustness and

security implications, the means of crafting adversarial examples are called attacks

to DNNs. In particular, targeted attacks aim to craft adversarial examples that are

misclassified as specific target classes, and untargeted attacks aim to craft adversarial

examples that are not classified as the original class. In addition to evaluating the

robustness of DNNs, adversarial examples can be used as a regularization tool to train

a robust model that is resilient to adversarial perturbations, known as adversarial

training [23, 24, 43]. They have also been used in interpreting DNNs [44, 45].

Here we summarize related works on attacking and defending DNNs against adver-

sarial examples.

2.1 Adversarial Attacks

2.1.1 White-box Attacks

Let x0 and x denote the original and adversarial examples, respectively, let l denote

the correct label, and let t denote the target class to attack.
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2.1.1.1 L-BFGS

Szegedy et al. [23] generated adversarial examples using box-constrained L-BFGS.

Given an image x0, their method finds a different image x that is similar to x0 under

L2 distance, yet is labeled differently by the classifier. They model the problem as a

constrained minimization problem:

minimize ∥x0 − x∥22

such that C(x) = l

where x ∈ [0, 1]p (5)

This problem can be very difficult to solve, however, so Szegedy et al. instead solve

the following problem:

minimize ∥x0 − x∥22 + c · loss(x, l)

such that x ∈ [0, 1]p (6)

where loss(x) is a function mapping an image to a positive real number quantifying

the success of the attack. One common loss function to use is cross-entropy. Line

search is performed to find the constant c > 0 that yields an adversarial example

of minimum distance: in other words, we repeatedly solve this optimization problem

for multiple values of c, adaptively updating c using bisection search or any other

method for one-dimensional optimization. The box constraint is handled natively by

the L-BFGS optimization algorithm.

2.1.1.2 Fast Gradient Methods

Fast gradient methods (FGM) use the gradient ∇J of the training loss J with respect

to x0 for crafting adversarial examples [24]. For the L∞ attack, the fast gradient sign

method, x is crafted by

x = x0 − ϵ · sign(∇J(x0, t)) (7)
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where ϵ specifies the L∞ distortion between x and x0, and sign(∇J) takes the sign

of the gradient. Intuitively, for each pixel, the fast gradient sign method uses the

gradient of the loss function to determine in which direction the pixel’s intensity

should be changed (whether it should be increased or decreased) to minimize the loss

function; then, it shifts all pixels simultaneously. For L1 and L2 attacks, x is crafted

by,

x = x0 − ϵ
∇J(x0, t)

∥∇J(x0, t)∥q
(8)

for q = 1, 2, where ϵ specifies the corresponding distortion. Untargeted attacks can

be implemented in a similar fashion.

2.1.1.3 Iterative Fast Gradient Methods

Iterative fast gradient methods (I-FGM) were proposed in [46], which iteratively use

FGM with a finer distortion, followed by an ϵ-ball clipping.In [43], PGD is introduced,

where I-FGM is modified to incorporate random starts.

2.1.1.4 JSMA

Papernot et al. proposed a Jacobian-based saliency map algorithm (JSMA) optimized

under L0 distance for characterizing the input-output relation of DNNs [47]. It can

be viewed as a greedy attack algorithm that iteratively modifies the most influential

pixel for crafting adversarial examples.

2.1.1.5 DeepFool

DeepFool is an untargeted L2 attack algorithm [48] based on the theory of projection

to the closest separating hyperplane in classification. The authors construct DeepFool

by imagining that the neural networks are totally linear, with a hyperplane separating

each class from another. From this, they analytically derive the optimal solution to

this simplified problem, and construct the adversarial example. Then, since neural
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networks are not actually linear, they take a step towards that solution, and repeat

the process a second time. The search terminates when a true adversarial example is

found.

2.1.1.6 C&W Attack

Instead of leveraging the training loss, Carlini and Wagner designed an L2-regularized

loss function based on the logit layer representation in DNNs for crafting adversarial

examples [49]. They rely on the initial formulation of adversarial examples presented

in Szegedy et al. [23], and construct various loss functions better suited for optimiza-

tion. Each of these loss functions outperform the cross-entropy loss used in [23], and

the best objective function, which is utilized in the formulation, is the following,

f(x, t) = max{max
j ̸=t

[Logit(x)]j − [Logit(x)]t,−κ} (9)

where Logit(x) = [[Logit(x)]1, . . . , [Logit(x)]K ] ∈ RK is the logit layer (the layer

prior to the softmax layer) representation of x in the considered DNN, K is the number

of classes for classification, and κ ≥ 0 is a confidence parameter that guarantees a

constant gap between maxj ̸=t[Logit(x)]j and [Logit(x)]t. The loss function in (9)

aims to render the label t the most probable class for x, and the parameter κ controls

the separation between t and the next most likely prediction among all classes other

than t. For untargeted attacks, the loss function can be modified in a similar fashion.

The constant c in (6) is found via modified binary search. The Adam optimizer [32]

is used, which does not natively support box constraints, thus Carlini and Wagner

remove the box constraint by replacing x with 1+tanh w
2

, where w ∈ Rp. By using

this change-of-variable, the optimization problem in (6) becomes an unconstrained

minimization problem with w as an optimizer, and Adam can be applied for solving

for the optimal w and obtain the corresponding adversarial example x.
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The C&W attack is considered to be one of the strongest attacks to DNNs, and is

the algorithm we both build from and compare to.

2.1.2 Black-box Attacks

Due to its feasibility, the case where an attacker can have free access to the input and

output of a targeted DNN while still being prohibited from performing backpropa-

gation on the targeted DNN has been called a practical black-box attack setting for

DNNs [49,50]. Under this attack setting, existing attacking approaches tend to make

use of the power of free query to train a substitute model [50], which is a representative

substitute of the targeted DNN. The substitute model can then be attacked using any

white-box attack techniques, and the generated adversarial images are used to attack

the target DNN. The primary advantage of training a substitute model is its total

transparency to an attacker, and hence essential attack procedures for DNNs, such

as backpropagation for gradient computation, can be implemented on the substitute

model for crafting adversarial examples. Moreover, since the substitute model is rep-

resentative of a targeted DNN in terms of its classification rules, adversarial attacks

to a substitute model are expected to be similar to attacking the corresponding tar-

geted DNN. In other words, adversarial examples crafted from a substitute model can

be highly transferable to the targeted DNN given the ability of querying the targeted

DNN at will.

2.1.3 No-box Attacks

A no-box attack refers to the most challenging case where attacker is not only prohib-

ited from performing backpropagation on the targeted DNN, but is unable to query

any information from the targeted classifier for adversarial attacks. In this case, one

cannot query the targeted DNN to train a substitute model, and must thus rely solely

on the property of transferability.
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In the context of adversarial attacks, transferability means that the adversarial ex-

amples generated from one model are also very likely to be misclassified by another

model. One possible explanation of inherent attack transferability for DNNs lies in the

findings that DNNs commonly have overwhelming generalization power and excessive

linearity [23, 24]. Ensemble methods can be used for generating high-confidence ad-

versarial examples for targeted transfer attacks [51]. More interestingly, the authors

in [52] have shown that a carefully crafted universal perturbation to a set of natural

images can lead to misclassification of all considered images with high probability,

suggesting the possibility of attack transferability from one image to another. Further

analysis and justification of a universal perturbation is given in [53].

2.2 Defenses to Adversarial Attacks

2.2.1 Adversarial Training

Adversarial training is training on adversarially perturbed examples from the training

set [24]. Adversarial training discourages the highly sensitive locally linear behavior

neural networks exhibit by encouraging the network to be locally constant in the

neighborhood of the training data. This can be seen as a way of explicitly introducing

a local constancy prior into supervised neural nets. The idea was first introduced

in [23] but was not yet practical because of the high computation cost of generating

adversarial examples. [24] showed how to generate adversarial examples inexpensively

with the fast gradient sign method and made it computationally efficient to generate

large batches of adversarial examples during the training process. After training to

resist these cheap adversarial examples, the model is usually successfully able to resist

new instances of the same kind of cheap adversarial example. However, if we then

use expensive, iterative adversarial examples, like those in [49], the model is usually

fooled.
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Two defense methods attempt to successfully implement adversarial training, the

Madry Defense Model [43] and Ensemble Adversarial Training [54]. The Madry de-

fense model is a high capacity network trained against PGD, iterative FGM with

random starts, which is deemed to be the strongest attack utilizing the local first-

order information about the network. It is currently the state-of-the-art MNIST

and CIFAR-10 defense. Ensemble adversarial training is a defense strategy which

augments training data with perturbations transferred from other models, and was

demonstrated to have strong robustness to transferred adversarial examples in the

NIPS 2017 Competition on Adversarial Attacks and Defenses. It is the currently

the state-of-the-art ImageNet defense. We demonstrate that these defenses can be

successfully attacked using ZOO [1] and EAD [2].

2.2.2 Defensive Distillation

Defensive distillation [55] defends against adversarial perturbations by using the dis-

tillation technique in [56] to retrain the network with class probabilities predicted

by the original network. It also introduces the temperature parameter T in the

softmax layer for gradient masking. Gradient masking modifies the network to not

give the attacker gradients to work on, an infinitesimal modification to the image

causes negligible change in the output of the model. However, the attacker can train

their own model, a smooth model that has a gradient, make adversarial examples

for their model, and then deploy those adversarial examples successfully against the

non-smooth gradient masked model.

In [49], the C&W attack was shown to break defensive distillation in the white-box

case, using the unmasked logit layer representation, and in the black-box case, by

generating transferable adversarial examples through increasing the margin hyperpa-

rameter κ. We demonstrate that EAD [2] can also break this defense.

48



2.2.3 Input Transformations

In recent work, attempts have been made to remove adversarial perturbations from

the input. In [57], transformations based on image cropping and rescaling, bit-depth

reduction, JPEG compression, total variance minimization, and image quilting were

explored. These defenses were demonstrated to be surprisingly effective against exist-

ing attacks, and the strongest defenses were found to be total variance minimization

and image quilting, due to their non-differentiable nature and inherent randomness.

In [58], color bit-depth reduction and spatial smoothing were combined in a joint

detection framework to achieve high detection rates against state-of-the-art attacks.

We demonstrate that this joint detection method can be bypassed by EAD [2].

3 ZOO

We show that a coordinate descent based method using only the zeroth order oracle

(without gradient information) can effectively attack black-box DNNs. Comparing to

the substitute model based black-box attack [50], our method significantly increases

the success rate for adversarial attacks, and attains comparable performance to the

state-of-the-art white-box attack (C&W attack).

In order to speed up the computational time and reduce number of queries for

our black-box attacks to large-scale DNNs, we propose several techniques including

attack-space dimension reduction, hierarchical attacks and importance sampling.

In addition to datasets of small image size (MNIST and CIFAR-10), we demonstrate

the applicability of our black-box attack model to a large DNN - the Inception-

v3 model [59] trained on ImageNet. Our attack is capable of crafting a successful

adversarial image within a reasonable time, whereas the substitute model based black-
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(a) a ZOO black-box targeted attack example

(b) ZOO black-box untargeted attack exam-
ples

Figure 1: Visual illustration of adversarial examples generated by applying our pro-
posed black-box attack (ZOO) to sampled images from ImageNet. The columns from
left to right are original images with correct labels, additive adversarial noise from
our attack, and crafted adversarial images with misclassified labels.

box attack in [50] only shows success in small networks trained on MNIST and is

hardly scalable to the case of ImageNet.

Finally, we attack ensemble adversarially trained networks, namely provided Inception-

v3 [59] and Inception ResNet-v2 models [60]1.

3.1 Motivation

Under the black-box setting, the methodology of current attacks concentrates on

training a substitute model and using it as a surrogate for adversarial attacks. In

other words, a black-box attack is made possible by deploying a white-box attack
1https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
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to the substitute model. Therefore, the effectiveness of such black-box adversarial

attacks heavily depends on the attack transferability from the substitute model to

the target model. Different from the existing approaches, we propose a black-box

attack via zeroth order optimization techniques. More importantly, the proposed

attack spares the need for training substitute models by enabling a “pseudo back

propagation” on the target model. Consequently, our attack can be viewed “as if it

was” a white-box attack to the target model, and its advantage over current black-box

methods can be explained by the fact that it avoids any potential loss in transferability

from a substitute model. The performance comparison between the existing methods

and our proposed black-box attack will be discussed in the results section.

3.2 Algorithm

Zeroth order methods are derivative-free optimization methods, where only the zeroth

order oracle (the objective function value f(x) at any x) is needed during optimization

process. By evaluating the objective function values at two very close points f(x+hv)

and f(x− hv) with a small h, a proper gradient along the direction vector v can be

estimated. Then, classical optimization algorithms like gradient descent or coordinate

descent can be applied using the estimated gradients. The convergence of these zeroth

order methods has been proven in the optimization literature [61–63], and under mild

assumptions (smoothness and Lipschitzian gradient) they can converge to a stationary

point with an extra error term which is related to gradient estimation and vanishes

when h→ 0.

Our proposed black-box attack to DNNs is cast as an optimization problem. It

exploits the techniques from zeroth order optimization and therefore spares the need of

training a substitute model for deploying adversarial attacks. Although it is intuitive

to use zeroth order methods to attack a black-box DNN model, applying it naively

can be impractical for large models.
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For example, the Inception-v3 network [59] takes input images with a size of 299 ×

299 × 3, and thus has p = 268, 203 variables (pixels) to optimize. To evaluate the

estimated gradient of each pixel, we need to evaluate the model twice. To just obtain

the estimated gradients of all pixels, 2p = 536, 406 evaluations are needed. For

a model as large as Inception-v3, each evaluation can take tens of milliseconds on a

single GPU, thus it is very expensive to even evaluate all gradients once. For targeted

attacks, sometimes we need to run an iterative gradient descent with hundreds of

iterations to generate an adversarial image, and it can be forbiddingly expensive to

use zeroth order method in this case.

In the scenario of attacking black-box DNNs, especially when the image size is large

(the variable to be optimized has a large number of coordinates), a single step of

gradient descent can be very slow and inefficient, because it requires estimating the

gradients of all coordinates to make a single update. Instead, we propose to use a

coordinate descent method to iteratively optimize each coordinate (or a small batch of

coordinates). By doing so, we can accelerate the attack process by efficiently updating

coordinates after only a few gradient evaluations.

This idea is similar to DNN training for large datasets, where we usually apply

stochastic gradient descent using only a small subset of training examples for effi-

cient updates, instead of computing the full gradient using all examples to make a

single update. Using coordinate descent, we update coordinates by small batches, in-

stead of updating all coordinates in a single update as in gradient descent. Moreover,

this allows us to further improve the efficiency of our algorithm by using carefully

designed sampling strategy to optimize important pixels first.

3.2.1 Zeroth Order Stochastic Coordinate Descent

The attack formulation in [49] presumes a white-box attack because (i): the logit layer

representation is a part of the internal state information of the DNN; and (ii) back-
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propagation on the targeted DNN is required for solving the optimization problem.

We amend our attack to the black-box setting by proposing the following approaches:

(i) modify the loss function f(x, t) in (9) such that it only depends on the output F of

a DNN and the desired class label t; and (ii) compute an approximate gradient using

a finite difference method instead of actual back propagation on the targeted DNN,

and solve the optimization problem via zeroth order optimization. We elucidate these

two approaches below.

• Loss function f(x, t) based on F : Inspired by (9), we propose a new hinge-like

loss function based on the output F of a DNN, which is defined as

f(x, t) = max{max
i ̸=t

log[F (x)]i − log[F (x)]t,−κ}, (10)

where κ ≥ 0 and log 0 is defined as −∞. We note that log(·) is a monotonic function

such that for any x, y ≥ 0, log y ≥ logx if and only if y ≥ x. This implies that

maxi ̸=t log[F (x)]i − log[F (x)]t ≤ 0 means x attains the highest confidence score for

class t. We find that the log operator is essential to our black-box attack since very

often a well-trained DNN yields a skewed probability distribution on its output F (x)

such that the confidence score of one class significantly dominates the confidence

scores of the other classes. The use of the log operator lessens the dominance effect

while preserving the order of confidence scores due to monotonicity. Similar to (9), κ

ensures a constant gap between maxi ̸=t log[F (x)]i and log[F (x)]t.

For untargeted attacks, an adversarial attack is successful when x is classified as any

class other than the original class label l. A similar loss function can be used (we

drop the variable t for untargeted attacks):

f(x) = max{log[F (x)]l −max
i ̸=l

log[F (x)]i,−κ}, (11)

where l is the original class label for x, and maxi ̸=l log[F (x)]i represents the most

probable predicted class other than l.
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• Zeroth order optimization on the loss function: We discuss our optimization

techniques for any general function f used for attacks.

We use the symmetric difference quotient [64] to estimate the gradient ∂f(x)
∂xi

(defined

as ĝi):

ĝi :=
∂f(x)
∂xi

≈ f(x + hei)− f(x− hei)

2h
, (12)

where h is a small constant (we set h = 0.0001 in all our experiments) and ei is

a standard basis vector with only the i-th component as 1. The estimation error

(not including the error introduced by limited numerical precision) is in the order of

O(h2). Although numerical accuracy is a concern, accurately estimating the gradient

is usually not necessary for successful adversarial attacks. One example is FGSM,

which only requires the sign (rather than the exact value) of the gradient to find

adversarial examples. Therefore, even if our zeroth order estimations may not be

very accurate, they suffice to achieve very high success rates, as we will show in our

experiments.

For any x ∈ Rp, we need to evaluate the objective function 2p times to estimate

gradients of all p coordinates. Interestingly, with just one more objective function

evaluation, we can also obtain the coordinate-wise Hessian estimate (defined as ĥi):

ĥi :=
∂2f(x)
∂x2

ii

≈ f(x + hei)− 2f(x) + f(x− hei)

h2
. (13)

Remarkably, since f(x) only needs to be evaluated once for all p coordinates, we can

obtain the Hessian estimates without additional function evaluations.

It is worth noting that stochastic gradient descent and batch gradient descent are two

most commonly used algorithms for training DNNs, and the C&W attack [49] also

used gradient descent to attack a DNN in the white-box setting. Unfortunately, in

the black-box setting, the network structure is unknown and the gradient computa-

tion via back propagation is prohibited. To tackle this problem, a naive solution is

applying (12) to estimate gradient, which requires 2p objective function evaluations.
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However, this naive solution is too expensive in practice. Even for an input image

size of 64 × 64 × 3, one full gradient descent step requires 24, 576 evaluations, and

typically hundreds of iterations may be needed until convergence. To resolve this is-

sue, we propose the following coordinate-wise update, which only requires 2 function

evaluations for each step.

Algorithm 1 Stochastic Coordinate Descent
1: while not converged do
2: Randomly pick a coordinate i ∈ {1, . . . , p}
3: Compute an update δ∗ by approximately minimizing

arg min
δ

f(x + δei)

4: Update xi ← xi + δ∗

5: end while

• Stochastic coordinate descent: Coordinate descent methods have been exten-

sively studied in optimization literature [65]. At each iteration, one variable (coordi-

nate) is chosen randomly and is updated by approximately minimizing the objective

function along that coordinate (see Algorithm 1 for details). The most challenging

part in Algorithm 1 is to compute the best coordinate update in step 3. After estimat-

ing the gradient and Hessian for xi, we can use any first or second order method to

approximately find the best δ. In first-order methods, we found that Adam [32]’s up-

date rule significantly outperforms vanilla gradient descent update and other variants

in our experiments, so we propose to use a zeroth-order coordinate Adam, as described

in Algorithm 2. We also use Newton’s method with both estimated gradient and Hes-

sian to update the chosen coordinate, as proposed in Algorithm 3. Note that when

the Hessian is negative (indicating the objective function is concave along direction

xi), we simply update xi by its gradient. We will show the comparison of these two

methods in the results section. Experimental results suggest coordinate-wise Adam

is faster than Newton’s method.
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Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordinate Descent with
Coordinate-wise ADAM
Require: Step size η, Adam states M ∈ Rp, v ∈ Rp, T ∈ Zp, Adam hyper-parameters

β1 = 0.9, β2 = 0.999, ϵ = 10−8

1: M ← 0, v ← 0, T ← 0
2: while not converged do
3: Randomly pick a coordinate i ∈ {1, · · · , p}
4: Estimate ĝi using (12)
5: Ti ← Ti + 1
6: Mi ← β1Mi + (1− β1)ĝi, vi ← β2vi + (1− β2)ĝ

2
i

7: M̂i = Mi/(1− βTi
1 ), v̂i = vi/(1− βTi

2 )

8: δ∗ = −η M̂i√
v̂i+ϵ

9: Update xi ← xi + δ∗

10: end while

Algorithm 3 ZOO-Newton: Zeroth Order Stochastic Coordinate Descent with
Coordinate-wise Newton’s Method
Require: Step size η

1: while not converged do
2: Randomly pick a coordinate i ∈ {1, · · · , p}
3: Estimate ĝi and ĥi using (12) and (13)
4: if ĥi ≤ 0 then
5: δ∗ ← −ηĝi
6: else
7: δ∗ ← −η ĝi

ĥi

8: end if
9: Update xi ← xi + δ∗

10: end while
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Note that for algorithmic illustration we only update one coordinate for each iteration.

In practice, to achieve the best efficiency of GPU, we usually evaluate the objective

in batches, and thus a batch of ĝi and ĥi can be estimated. In our implementation

we estimate B = 128 pixels’ gradients and Hessians per iteration, and then update B

coordinates in a single iteration.

3.2.2 Attack-space Dimension Reduction

We first define ∆x = x − x0 and ∆x ∈ Rp to be the adversarial noise added to the

original image x0. Our optimization procedure starts with ∆x = 0. For networks with

a large input size p, optimizing over Rp (we call it attack-space) using zeroth order

methods can be quite slow because we need to estimate a large number of gradients.

Instead of directly optimizing ∆x ∈ Rp, we introduce a dimension reduction trans-

formation D(y) where y ∈ Rm, range(D) ∈ Rp, and m < p. The transformation can

be linear or non-linear. Then, we use D(y) to replace ∆x = x − x0 in the attack

formulation:

minimizey ∥D(y)∥22 + c · f(x0 +D(y), t) (14)

subject to x0 +D(y) ∈ [0, 1]p.

The use of D(y) effectively reduces the dimension of attack-space from p to m. Note

that we do not alter the dimension of an input image x but only reduce the permis-

sible dimension of the adversarial noise. A convenient transformation is to define D

to be the upscaling operator that resizes y as a size-p image, such as the bilinear

interpolation method. For example, in the Inception-v3 network y can be a small

adversarial noise image with dimension m = 32 × 32 × 3, while the original image

dimension is p = 299 × 299 × 3. Other transformations like DCT (discrete cosine

transformation) can also be used. We will show the effectiveness of this method in

the results section.
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3.2.3 Hierarchical Attack

When applying attack-space dimension reduction with a small m, although the attack-

space is efficient to optimize using zeroth order methods, a valid attack might not

be found due to the limited search space. Conversely, if a large m is used, a valid

attack can be found in that space, but the optimization process may take a long

time. Thus, for large images and difficult attacks, we propose to use a hierarchical

attack scheme, where we use a series of transformations D1, D2 · · · with dimensions

m1,m2, · · · to gradually increase m during the optimization process. In other words,

at a specific iteration j (according to the dimension increasing schedule) we set yj =

D−1
i (Di−1(yj−1)) to increase the dimension of y from mi−1 to mi (D−1 denotes the

inverse transformation of D).

For example, when using image scaling as the dimension reduction technique, D1

upscales y from m1 = 32 × 32 × 3 to 299 × 299 × 3, and D2 upscales y from m2 =

64×64×3 to 299×299×3. We start with m1 = 32×32×3 variables to optimize with

and use D1 as the transformation, then after a certain number of iterations (when the

decrease in the loss function is not apparent, indicating the need of a larger attack-

space), we upscale y from 32 × 32 × 3 to 64 × 64 × 3, and use D2 for the following

iterations.

3.2.4 Optimize the Important Pixels First

One benefit of using coordinate descent is that we can choose which coordinates to

update. Since estimating the gradient and Hessian for each pixel is expensive in

the black-box setting, we propose to selectively update pixels by using importance

sampling. For example, pixels in the corners or at the edges of an image are usually

less important, whereas pixels near the main object can be crucial for a successful
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Figure 2: Attacking the bagel image in Figure 1 (a) with importance sampling. Top:
Pixel values in certain parts of the bagel image have significant changes in RGB
channels, and the changes in the R channel is more prominent than other channels.
Here the attack-space is 32 × 32 × 3. Although our targeted attack in this attack-
space fails, its adversarial noise provides important clues to pixel importance. We
use the noise from this attack-space to sample important pixels after we increase
the dimension of attack-space to a larger dimension. Bottom: Importance sampling
probability distribution for 64× 64× 3 attack-space. The importance is computed by
taking the absolute value of pixel value changes, running a 4×4 max-pooling for each
channel, up-sampling to the dimension of 64× 64× 3, and normalizing all values.

attack. Therefore, in the attack process we sample more pixels close to the main

object indicated by the adversarial noise.

We propose to divide the image into 8× 8 regions, and assign sampling probabilities

according to how large the pixel values change in that region. We run a max pooling

of the absolute pixel value changes in each region, up-sample to the desired dimension,

and then normalize all values such that they sum up to 1. Every few iterations, we

update these sampling probabilities according to the recent changes. In Figure 2, we

show a practical example of pixel changes and how importance sampling probabilities

are generated when attacking the bagel image in Figure 1 (a).
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3.3 Experimental Results

3.3.1 Setup

We compare our attack (ZOO) with Carlini & Wagner’s (C&W) white-box attack [49]

and the substitute model based black-box attack [50]. We would like to show that

our black-box attack can achieve similar success rate and distortion as the white-box

C&W attack, and can significantly outperform the substitute model based black-box

attack, while maintaining a reasonable attack time.

Our experimental setup is based on Carlini & Wagner’s framework2 with our Adam

and Newton based zeroth order optimizer included. For substitute model based at-

tack, we use the reference implementation (with necessary modifications) in Clever-

Hans3 for comparison. For experiments on MNIST and CIFAR, we use a Intel Xeon

E5-2690v4 CPU with a single NVIDIA K80 GPU; for experiments on ImageNet, we

use a AMD Ryzen 1600 CPU with a single NVIDIA GTX 1080 Ti GPU. For imple-

menting zeroth order optimization, we use a batch size of B = 128; i.e., we evaluate

128 gradients and update 128 coordinates per iteration. In addition, we set κ = 0

unless specified.

3.3.2 MNIST and CIFAR-10

DNN Model. For MNIST and CIFAR-10, we use the same DNN model as in the

C&W attack ( [49], Table 1). For the substitute model based attack, we use the same

DNN model for both the target model and the substitute model. If the architecture of

a targeted DNN is unknown, black-box attacks based on substitute models will yield

worse performance due to model mismatch.
2https://github.com/carlini/nn_robust_attacks
3https://github.com/tensorflow/cleverhans/blob/master/tutorials/mnist_blackbox.

py
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Target images. For targeted attacks, we randomly select 100 images from MNIST

and CIFAR-10 test sets, and skip the original images misclassified by the target model.

For each image, we apply targeted attacks to all 9 other classes, and thus there are

900 attacks in total. For untargeted attacks, we randomly select 200 images from the

MNIST and CIFAR-10 test sets.

Parameter setting. For both our attack and the C&W attack, we run a binary

search up to 9 times to find the best c (starting from 0.01), and terminate the op-

timization process early if the loss does not decrease for 100 iterations. We use the

same step size η = 0.01 and Adam parameters β1 = 0.9, β2 = 0.999 for all methods.

For the C&W attack, we run 1,000 iterations; for our attack, we run 3,000 itera-

tions for MNIST and 1,000 iterations for CIFAR. Note that our algorithm updates

far less variables because for each iteration we only update 128 pixels, whereas in the

C&W attack all pixels are updated based on the full gradient in one iteration due to

the white-box setting. Also, since the image size of MNIST and CIFAR-10 is small,

we do not reduce the dimension of the attack-space or use hierarchical attack and

importance sampling.

For training the substitute model, we use 150 hold-out images from the test set and

run 5 Jacobian augmentation epochs, and set the augmentation parameter λ = 0.1.

We implement FGSM and the C&W attack on the substitute model for both targeted

and untargeted transfer attacks to the black-box DNN. For FGSM, the perturbation

parameter ϵ = 0.4, as it is shown to be effective in [50]. For the C&W attack, we

use the same settings as the white-box C&W, except for setting κ = 20 for attack

transferability and using 2,000 iterations.

When attacking MNIST, we found that the change-of-variable via tanh can cause the

estimated gradients to vanish due to limited numerical accuracy when pixel values are

close to the boundary (0 or 1). As an alternative, we project the pixel values within
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Table 1: MNIST and CIFAR-10 attack comparison: ZOO attains comparable success
rate and L2 distortion as the white-box C& W attack, and significantly outperforms
the black-box substitute model attacks using FGSM (L∞ attack) and the C&W at-
tack [50]. The numbers in parentheses in Avg. Time field is the total time for training
the substitute model. For FGSM we do not compare its L2 with other methods be-
cause it is an L∞ attack.

MNIST
Untargeted Targeted

Success Rate Avg. L2 Avg. Time (per attack) Success Rate Avg. L2 Avg. Time (per attack)
White-box (C&W) 100 % 1.48066 0.48 min 100 % 2.00661 0.53 min
Black-box (Substitute Model + FGSM) 40.6 % - 0.002 sec (+ 6.16 min) 7.48 % - 0.002 sec (+ 6.16 min)
Black-box (Substitute Model + C&W) 33.3 % 3.6111 0.76 min (+ 6.16 min) 26.74 % 5.272 0.80 min (+ 6.16 min)
Proposed black-box (ZOO-ADAM) 100 % 1.49550 1.38 min 98.9 % 1.987068 1.62 min
Proposed black-box (ZOO-Newton) 100 % 1.51502 2.75 min 98.9 % 2.057264 2.06 min

CIFAR-10
Untargeted Targeted

Success Rate Avg. L2 Avg. Time (per attack) Success Rate Avg. L2 Avg. Time (per attack)
White-box (C&W) 100 % 0.17980 0.20 min 100 % 0.37974 0.16 min
Black-box (Substitute Model + FGSM) 76.1 % - 0.005 sec (+ 7.81 min) 11.48 % - 0.005 sec (+ 7.81 min)
Black-box (Substitute Model + C&W) 25.3 % 2.9708 0.47 min (+ 7.81 min) 5.3 % 5.7439 0.49 min (+ 7.81 min)
Proposed Black-box (ZOO-ADAM) 100 % 0.19973 3.43 min 96.8 % 0.39879 3.95 min
Proposed Black-box (ZOO-Newton) 100 % 0.23554 4.41 min 97.0 % 0.54226 4.40 min

the box constraints after each update for MNIST (projected gradient descent). But

for CIFAR-10, we find that using change-of-variable converges faster, as most pixels

are not close to the boundary.

Results. As shown in Table 1, our proposed attack (ZOO) achieves nearly 100%

success rate. Furthermore, the L2 distortions are also close to the C&W attack,

indicating our black-box adversarial images have similar quality as the white-box

approach (Figures 3 and 4). Notably, our success rate is significantly higher than

the substitute model based attacks, especially for targeted attacks, while maintaining

reasonable average attack time. When transferring attacks from the substitute models

to the target DNN, FGSM achieves better success rates in some experiments because

it uses a relatively large ϵ = 0.4 and introduces much more noise than the C&W

attack. We also find that Adam usually works better than Newton’s method in terms

of computation time and L2 distortion.
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(a) (b) White-box C&W attack
(c) ZOO-ADAM black-box
attack

(d) ZOO-Newton black-box
attack

Figure 3: Visual comparison of successful adversarial examples in MNIST. Each row
displays crafted adversarial examples from the sampled images in (a). Each column
in (b) to (d) indexes the targeted class for attack (digits 0 to 9).

3.3.3 Inception Network with ImageNet

Attacking a large black-box network like Inception-v3 [59] can be challenging due to

its large attack-space and expensive model evaluation. Black-box attacks via substi-

tute models become impractical in this case, as a substitute model with a large enough

capacity relative to Inception-V3 is needed, and a tremendous amount of costly Ja-

cobian data augmentation is needed to train this model. On the other hand, transfer

attacks may suffer from lower success rate comparing to white-box attacks, especially

for targeted attacks. Here we Here we apply the techniques proposed previously (di-
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(a) (b) White-box C&W attack
(c) ZOO-ADAM black-box
attack

(d) ZOO-Newton black-box
attack

Figure 4: Visual comparison of successful adversarial examples in CIFAR-10. Each
row displays crafted adversarial examples from the sampled images in (a). Each
column in (b) to (d) indexes the targeted class for attack.

mension reduction, hierarchical attack, and importance sampling) to overcome the

optimization difficulty toward effective and efficient black-box attacks.

• Untargeted black-box attacks to Inception-v3.

Examples. We use 150 images from the ImageNet test set for untargeted attacks. To

justify the effectiveness of using attack-space dimension reduction, we exclude small

images in the test set and ensure that all the original images are at least 299 × 299

in size. We also skip all images that are originally misclassified by Inception-v3.

Attack techniques and parameters. We use an attack-space of only 32×32×3 (the

original input space is 299×299×3) and do not use hierarchical attack. We also set a
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Table 2: Untargeted ImageNet attacks comparison. Substitute model based attack
cannot easily scale to ImageNet.

Success Rate Avg. L2

White-box (C&W) 100 % 0.37310
Proposed black-box (ZOO-ADAM) 88.9 % 1.19916
Black-box (Substitute Model) N.A. N.A.

hard limit of 1, 500 iterations for each attack, which takes about 20 minutes per attack

in our setup. In fact, during 1, 500 iterations, only 1500×128 = 192, 000 gradients are

evaluated, which is even less than the total number of pixels (299×299×3 = 268, 203)

of the input image. We fix c = 10 in all Inception-v3 experiments, as it is too costly

to do binary search in this case. For both C&W and our attacks, we use step size

0.002.

Results. We compare the success rate and average L2 distortion between our ZOO

attack and the C&W white-box attack in Table 2. Despite running only 1,500 iter-

ations (within 20 minutes per image) and using a small attack-space (32 × 32 × 3),

our black-box attack achieves about 90% success rate. The average L2 distortion is

about 3 times larger than the white-box attack, but our adversarial images are still

visually indistinguishable (Figures 1). The success rate and distortion can be further

improved if we run more iterations.

• Targeted black-box attacks to Inception-v3.

For Inception-v3, a targeted attack is much more difficult as there are 1000 classes,

and a successful attack means one can manipulate the predicted probability of any

specified class. However, we report that using our advanced attack techniques, 20, 000

iterations (each with B = 128 pixel updates) are sufficient for a hard targeted attack.

Example. We select an image (Figure 1 (a)) for which our untargeted attack failed,

i.e., we cannot even find an untargeted attack in the 32 × 32 × 3 attack-space, indi-

cating that this image is hard to attack. Inception-v3 classifies it as a “bagel” with

97.0% confidence, and other top-5 predictions include “guillotine”, “pretzel”, “Granny
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Smith” and “dough” with 1.15%, 0.07%, 0.06% and 0.01% confidence. We deliber-

ately make the attack even harder by choosing the target class as “grand piano”, with

original confidence of only 0.0006%.

Attack techniques. We use attack-space dimension reduction as well as hierarchical

attack. We start from an attack-space of 32× 32× 3, and increase it to 64× 64× 3

and 128 × 128 × 3 at iteration 2,000 and 10,000, respectively. We run the zeroth

order Adam solver (Algorithm 2) with a total of 20,000 iterations, taking about 260

minutes in our setup. Also, when the attack space is greater than 32 × 32 × 3, we

incorporate importance sampling, and keep updating the sampling probability after

each iteration.

Reset Adam states. We report an additional method to reduce the final distor-

tion - reset the Adam solver’s states when a first valid attack is found during the

optimization process. The reason is as follows. The total loss consists of two parts:

l1 := c · f(x, t) and l2 := ∥x − x0∥22. l1 measures the difference between the original

class probability Porig and targeted class probability Ptarget as defined in (10). When

l1 = 0, Porig ≤ Ptarget, and a valid adversarial example is found. l2 is the L2 distortion.

During the optimization process, we observe that before l1 reaches 0, l2 is likely to

increase, i.e., adding more distortion and getting closer to the target class. After

l1 reaches 0 it cannot go below 0 because it is a hinge-like loss, and at this point

the optimizer should try to reduce l2 as much as possible while keeping Ptarget only

slightly larger than Porig. However, when we run coordinate-wise Adam, we found

that even after l1 reaches 0, the optimizer still tries to reduce Porig and to increase

Ptarget, and l2 will not be decreased efficiently. We believe the reason is that the

historical gradient statistics stored in Adam states are quite stale due to the large

number of coordinates. Therefore, we simply reset the Adam states after l1 reaches 0

for the first time in order to make the solver focus on decreasing l2 afterwards.
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Results. Figure 5 shows how the loss decreases versus iterations, with all techniques

discussed above applied in red; other curves show the optimization process without

a certain technique but all others included. The black curve decreases very slowly,

suggesting hierarchical attack is extremely important in accelerating our attack, oth-

erwise the large attack-space makes zeroth order methods infeasible. Importance

sampling also makes a difference especially after iteration 10,000 – when the attack-

space is increased to 128× 128× 3; it helps us to find the first valid attack over 2,000

iterations earlier, thus leaving more time for reducing the distortion. The benefit of

reseting Adam states is clearly shown in Table 3, where the final distortion and loss

increase noticeably if we do not reset the states. The proposed ZOO attack succeeds

in decreasing the probability of the original class by over 160x (from 97% to about

0.6%) while increasing the probability of the target class by over 1000x (from 0.0006%

to over 0.6%, which is top-1) to achieve a successful attack. Furthermore, as shown

in Figures 1, the crafted adversarial noise is almost negligible and indistinguishable

by human eyes.

Figure 5: Left: total loss ∥x−x0∥22+c·f(x, t) versus iterations. Right: c·f(x, t) versus
iterations (log y-scale). When c · f(x, t) reaches 0, a valid attack is found. With all
techniques applied, the first valid attack is found at iteration 15, 227. The optimizer
then continues to minimize ∥x− x0∥22 to reduce distortion. In the right figure we do
not show the curve without resetting Adam states because we reset Adam states only
when c · f(x, t) reaches 0 for the first time.
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Table 3: Comparison of different attack techniques. “First Valid” indicates the it-
eration number where the first successful attack was found during the optimization
process.

Black-box (ZOO-ADAM) Success? First Valid Final L2 Final Loss
All techniques Yes 15,227 3.425 11.735
No Hierarchical Attack No - - 62.439
No importance sampling Yes 17,403 3.63486 13.216
No Adam state reset Yes 15,227 3.47935 12.111

3.3.4 Ensemble Adversarial Training

We randomly sample 10 correctly classified examples from the ImageNet test set.

We perform a non-targeted attack on the ensemble adversarially trained Inception-

v3 and Inception ResNet-v2 models using the same configuration as presented in

the previous section. We notice 100% success on both models, with the adversarial

examples remaining visually imperceptible. We test as well with the test examples

in (Figure 1 (b)), and are able to succeed on all 3 against the ensemble adversarially

trained networks.

4 EAD

We show that compared to the state-of-the-art L2 and L∞ attacks [46,49], EAD can

attain similar attack success rate when breaking undefended and defensively distilled

DNNs [55]. More importantly, we find that L1 attacks attain superior performance

over L2 and L∞ attacks in transfer attacks and complement adversarial training. For

the most difficult dataset (MNIST), EAD results in improved attack transferability

from an undefended DNN to a defensively distilled DNN, achieving nearly 99% attack

success rate. In addition, joint adversarial training with L1 and L2-based examples

can further enhance the resilience of DNNs to adversarial perturbations.

We also find that L1-based adversarial examples generated by EAD readily transfer

in both the targeted and non-targeted cases to the Madry Defense Model, and despite

the high L∞ distortion, the visual distortion on the adversarial examples is minimal.
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We also find that adversarial examples with minimal visual distortion generated by

EAD can bypass the Feature Squeezing joint detection method.

These results suggest that EAD yields a distinct yet more effective set of adversarial

examples, and is the state-of-the-art attack method in the no-box setting.

4.1 Motivation

In the literature, the similarity between original and adversarial examples has been

measured by different distortion metrics. One commonly used distortion metric is the

Lq norm, where ∥x∥q = (
∑p

i=1 |xi|q)1/q denotes the Lq norm of a p-dimensional vector

x = [x1, . . . ,xp] for any q ≥ 1. In particular, when crafting adversarial examples,

the L∞ distortion metric is used to evaluate the maximum variation in pixel value

changes [24], while the L2 distortion metric is used to improve the visual quality [49].

However, despite the fact that the L1 norm is widely used in problems related to image

denoising and restoration [66], as well as sparse recovery [67], L1-based adversarial

examples have not been rigorously explored. In the context of adversarial examples,

L1 distortion accounts for the total variation in the perturbation and serves as a

popular convex surrogate function of the L0 metric, which measures the number of

modified pixels (i.e., sparsity) by the perturbation. To bridge this gap, we propose an

attack algorithm based on elastic-net regularization, which we call elastic-net attacks

to DNNs (EAD). Elastic-net regularization is a linear mixture of L1 and L2 penalty

functions, and it has been a standard tool for high-dimensional feature selection

problems [68]. In the context of attacking DNNs, EAD generalizes the state-of-the-

art attack proposed in [49] based on L2 distortion, and is able to craft L1-oriented

adversarial examples that are fundamentally different from existing attack methods.
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4.2 Algorithm

4.2.1 Elastic-net Regularization

Elastic-net regularization is a widely used technique in solving high-dimensional fea-

ture selection problems [68]. It can be viewed as a regularizer that linearly combines

L1 and L2 penalty functions. In general, elastic-net regularization is used in the

following minimization problem:

minimizez∈Z f(z) + λ1∥z∥1 + λ2∥z∥22, (15)

where z is a vector of p optimization variables, Z indicates the set of feasible solutions,

f(z) denotes a loss function, ∥z∥q denotes the Lq norm of z, and λ1, λ2 ≥ 0 are the

L1 and L2 regularization parameters, respectively. The term λ1∥z∥1 + λ2∥z∥22 in (15)

is called the elastic-net regularizer of z.

For standard regression problems, the loss function f(z) is the mean squared error,

the vector z represents the weights (coefficients) on the features, and the set Z =

Rp. In particular, the elastic-net regularization in (15) degenerates to the LASSO

formulation when λ2 = 0, and becomes the ridge regression formulation when λ1 = 0.

It is shown in [68] that elastic-net regularization is able to select a group of highly

correlated features, which overcomes the shortcoming of high-dimensional feature

selection when solely using the LASSO or ridge regression techniques.

4.2.2 EAD Formulation

Inspired by the C&W attack [49], we adopt the same loss function f for crafting

adversarial examples, as presented in (9). In addition to manipulating the prediction

via the loss function in (9), introducing elastic-net regularization further encourages

similarity to the original image when crafting adversarial examples. Our formulation

of elastic-net attacks to DNNs (EAD) for crafting an adversarial example (x, t) with
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respect to a labeled normal image (x0, l) is as follows:

minimizex c · f(x, t) + β∥x− x0∥1 + ∥x− x0∥22

subject to x ∈ [0, 1]p, (16)

where f(x, t) is as defined in (9), c, β ≥ 0 are the regularization parameters of the

loss function f and the L1 penalty, respectively. Upon defining the perturbation of x

relative to x0 as δ = x−x0, the EAD formulation in (16) aims to find an adversarial

example x that will be classified as the target class t while minimizing the distortion

in δ in terms of the elastic-net loss β∥δ∥1 + ∥δ∥22, which is a linear combination of L1

and L2 distortion metrics between x and x0. Notably, the formulation of the C&W

attack [49] becomes a special case of the EAD formulation in (16) when β = 0, which

disregards the L1 penalty on δ. However, the L1 penalty is an intuitive regularizer

for crafting adversarial examples, as ∥δ∥1 =
∑p

i=1 |δi| represents the total variation of

the perturbation, and is also a widely used surrogate function for promoting sparsity

in the perturbation. As will be evident in the results section, including the L1 penalty

for the perturbation indeed yields a distinct set of adversarial examples, and it leads

to improved attack transferability and complements adversarial learning.

4.2.3 EAD Algorithm

When solving the EAD formulation in (16) without the L1 penalty (i.e., β = 0),

Carlini and Wagner used a change-of-variable (COV) approach via the tanh trans-

formation on x in order to remove the box constraint x ∈ [0, 1]p [49]. When β > 0,

we find that the same COV approach is not effective in solving (16), since the cor-

responding adversarial examples are insensitive to the changes in β (see the results

section for details). Since the L1 penalty is a non-differentiable yet smooth function,

the failure of the COV approach in solving (16) can be explained by its inefficiency

in subgradient-based optimization problems [69].
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To efficiently solve the EAD formulation in (16) for crafting adversarial examples, we

propose to use the iterative shrinkage-thresholding algorithm (ISTA) [70]. ISTA can

be viewed as a regular first-order optimization algorithm with an additional shrinkage-

thresholding step on each iteration. In particular, let g(x) = c · f(x) + ∥x−x0∥22 and

let ∇g(x) be the numerical gradient of g(x) computed by the DNN. At the k + 1-th

iteration, the adversarial example x(k+1) of x0 is computed by

x(k+1) = Sβ(x(k) − αk∇g(x(k))) (17)

where αk denotes the step size at the k + 1-th iteration, and Sβ : Rp 7→ Rp is an

element-wise projected shrinkage-thresholding function, which is defined as

[Sβ(z)]i =


min{zi − β, 1}, if zi − x0i > β;

x0i, if |zi − x0i| ≤ β;

max{zi + β, 0}, if zi − x0i < −β,

(18)

for any i ∈ {1, . . . , p}. If |zi − x0i| > β, it shrinks the element zi by β and projects

the resulting element to the feasible box constraint between 0 and 1. On the other

hand, if |zi − x0i| ≤ β, it thresholds zi by setting [Sβ(z)]i = x0i. Notably, since g(x)

is the attack objective function of the C&W method [49], the ISTA operation in (17)

can be viewed as a robust version of the C&W method that shrinks a pixel value of

the adversarial example if the deviation to the original image is greater than β, and

keeps a pixel value unchanged if the deviation is less than β.

4.2.3.1 Proof of Optimality of ISTA for Solving EAD

Since the L1 penalty β∥x− x0∥1 in (15) is a non-differentiable yet smooth function,

we use the proximal gradient method [71] for solving the EAD formulation in (15).

Define ΦZ(z) to be the indicator function of an interval Z such that ΦZ(z) = 0 if

z ∈ Z and ΦZ(z) = ∞ if z /∈ Z. Using ΦZ(z), the EAD formulation in (15) can be

rewritten as

minimizex∈Rp g(x) + β∥x− x0∥1 + Φ[0,1]p(x), (19)
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where g(x) = c · f(x, t) + ∥x − x0∥22. The proximal operator Prox(x) of β∥x − x0∥1

constrained to x ∈ [0, 1]p is

Prox(x) = arg min
z∈Rp

1

2
∥z− x∥22 + β∥z− x0∥1 + Φ[0,1]p(z)

= arg min
z∈[0,1]p

1

2
∥z− x∥22 + β∥z− x0∥1

= Sβ(x), (20)

where the mapping function Sβ is defined in (18). Consequently, using (20), the

proximal gradient algorithm for solving (16) is iterated by

x(k+1) = Prox(x(k) − αk∇g(x(k))) (21)

= Sβ(x(k) − αk∇g(x(k))), (22)

which completes the proof.

4.2.3.2 Implementation

Our EAD algorithm for crafting adversarial examples is summarized in Algorithm 4.

For computational efficiency, a fast ISTA (FISTA) for EAD is implemented, which

yields the optimal convergence rate for first-order optimization methods [70]. The

slack vector y(k) in Algorithm 4 incorporates the momentum in x(k) for acceleration.

In the experiments, we set the initial learning rate α0 = 0.01 with a square-root decay

factor in k. During the EAD iterations, the iterate x(k) is considered as a successful

adversarial example of x0 if the model predicts its most likely class to be the target

class t. The final adversarial example x is selected from all successful examples based

on distortion metrics. In this paper we consider two decision rules for selecting x:

the least elastic-net (EN) and L1 distortions relative to x0. The influence of β, κ and

the decision rules on EAD will be investigated in the following section.
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Algorithm 4 Elastic-Net Attacks to DNNs (EAD)
Input: original labeled image (x0, t0), target attack class t, attack transferability
parameter κ, L1 regularization parameter β, step size αk, # of iterations I
Output: adversarial example x
Initialization: x(0) = y(0) = x0

for k = 0 to I − 1 do
x(k+1) = Sβ(y(k) − αk∇g(y(k)))
y(k+1) = x(k+1) + k

k+3
(x(k+1) − x(k))

end for
Decision rule: determine x from successful examples in {x(k)}Ik=1 (EN rule or L1

rule).

4.3 Experimental Results

In this section, we compare the proposed EAD algorithm with the state-of-the-art

attacks to DNNs on three image classification datasets - MNIST, CIFAR-10 and

ImageNet. We would like to show that (i) EAD can attain attack performance similar

to the C&W attack in breaking undefended and defensively distilled DNNs, since the

C&W attack is a special case of EAD when β = 0; (ii) Comparing to existing L1-

based FGM and I-FGM methods, the adversarial examples using EAD can lead to

significantly lower L1 distortion and better attack success rate; (iii) The L1-based

adversarial examples crafted by EAD can achieve improved attack transferability

and complement adversarial training.

4.3.1 Setup

We compare our attack (EAD) with Carlini & Wagner’s (C&W) attack [49], the fast

gradient method (FGM) attacks [24] using L1, L2, and L∞ (FGSM), and the iterative

fast gradient method (I-FGM) attacks [46] using L1, L2, and L∞ (I-FGM).

Our experiment setup is based on Carlini and Wagner’s framework4. For both the

EAD and C&W attacks, we use the default setting4, which implements 9 binary search

steps on the regularization parameter c (starting from 0.001) and runs I = 1000

4https://github.com/carlini/nn_robust_attacks
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iterations for each step with the initial learning rate α0 = 0.01. For finding successful

adversarial examples, we use the reference optimizer4 (Adam) for the C&W attack

and implement the projected FISTA (Algorithm 4) with the square-root decaying

learning rate for EAD. Similar to the C&W attack, the final adversarial example of

EAD is selected by the least distorted example among all the successful examples.

The sensitivity analysis of the L1 parameter β and the effect of the decision rule on

EAD will be investigated in the forthcoming results. Unless specified, we set the

attack transferability parameter κ = 0 for both attacks.

We implemented FGM and I-FGM using the CleverHans package5. The best distor-

tion parameter ϵ is determined by a fine-grained grid search - for each image, the

smallest ϵ leading to a successful attack is reported. For I-FGM, we perform 10 FGM

iterations (the default value) with ϵ-ball clipping. The distortion parameter ϵ′ in each

FGM iteration is set to be ϵ/10, which has been shown to be an effective attack

setting in [54].

The range and resolution of the grid search is presented in Table 4. The selected

range for the grid search covers the reported distortion statistics of EAD and the C&W

attack. The resolution of the grid search for FGM is selected such that it will generate

1000 candidates of adversarial examples during the grid search per input image. The

resolution of the grid search for I-FGM is selected such that it will compute gradients

for 10000 times in total (i.e., 1000 FGM operations × 10 iterations) during the grid

search per input image, which is more than the total number of gradients (9000)

computed by EAD and the C&W attack.

The image classifiers for MNIST and CIFAR-10 are trained based on the DNN models

provided by Carlini and Wagner4. The image classifier for ImageNet is the Inception-

v3 model [59]. For MNIST and CIFAR-10, 1000 correctly classified images are ran-

domly selected from the test sets to attack an incorrect class label. For ImageNet,
5https://github.com/tensorflow/cleverhans/blob/master/cleverhans/attacks.py
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Table 4: Range and resolution of the grid search for finding the optimal distortion
parameter ϵ for FGM and I-FGM.

Grid Search
Method Range Resolution

FGM-L∞ [10−3, 1] 10−3

FGM-L1 [1, 103] 1
FGM-L2 [10−2, 10] 10−2

I-FGM-L∞ [10−3, 1] 10−3

I-FGM-L1 [1, 103] 1
I-FGM-L2 [10−2, 10] 10−2

100 correctly classified images and 9 incorrect classes are randomly selected to attack.

All experiments are conducted on a machine with an Intel E5-2690 v3 CPU, 40 GB

RAM and a single NVIDIA K80 GPU.

4.3.2 Evaluation Metrics

Following the attack evaluation criterion in [49], we report the attack success rate

and distortion of the adversarial examples from each method. The attack success

rate (ASR) is defined as the percentage of adversarial examples that are classified

as the target class (which is different from the original class). The average L1, L2

and L∞ distortion metrics of successful adversarial examples are also reported. In

particular, the ASR and distortion of the following attack settings are considered:

Best case: The least difficult attack among targeted attacks to all incorrect class

labels in terms of distortion.

Average case: The targeted attack to a randomly selected incorrect class label.

Worst case: The most difficult attack among targeted attacks to all incorrect class

labels in terms of distortion.

4.3.3 Sensitivity Analysis and Decision Rule for EAD

We verify the necessity of using Algorithm 4 for solving the elastic-net regularized

attack formulation in (16) by comparing it to a naive change-of-variable (COV) ap-

proach. In [49], Carlini and Wagner remove the box constraint x ∈ [0, 1]p by replacing

76



x with 1+tanh w
2

, where w ∈ Rp and 1 ∈ Rp is a vector of ones. The default Adam

optimizer [32] is then used to solve w and obtain x. We apply this COV approach to

(16) and compare with EAD on MNIST with different orders of the L1 regularization

parameter β in Table 5. Although COV and EAD attain similar ASR, it is observed

that COV is not effective in crafting L1-based adversarial examples. Increasing β

leads to less L1-distorted adversarial examples for EAD, whereas the distortion (L1,

L2 and L∞) of COV is insensitive to changes in β. Similar insensitivity of COV on β

is observed when one uses other optimizers such as AdaGrad, RMSProp or built-in

SGD in TensorFlow [72]. We also note that the COV approach prohibits the use of

ISTA due to the subsequent tanh term in the L1 penalty.

The insensitivity of COV suggests that it is inadequate for elastic-net optimization,

which can be explained by its inefficiency in subgradient-based optimization prob-

lems [69]. For EAD, we also find an interesting trade-off between L1 and the other

two distortion metrics - adversarial examples with smaller L1 distortion tend to have

larger L2 and L∞ distortions. This trade-off can be explained by the fact that increas-

ing β further encourages sparsity in the perturbation, and hence results in increased

L2 and L∞ distortion. Similar results are observed on CIFAR-10.

In Table 5, during the attack optimization process the final adversarial example is

selected based on the elastic-net loss of all successful adversarial examples in {x(k)}Ik=1,

which we call the elastic-net (EN) decision rule. Alternatively, we can select the final

adversarial example with the least L1 distortion, which we call the L1 decision rule.

Figure 6 compares the ASR and average-case distortion of these two decision rules

with different β on MNIST. Both decision rules yield 100% ASR for a wide range of β

values. For the same β, the L1 rule gives adversarial examples with less L1 distortion

than those given by the EN rule at the price of larger L2 and L∞ distortions. Similar

trends are observed on CIFAR-10. In the following experiments, we will report the

results of EAD with these two decision rules and set β = 10−3, since on MNIST and
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Table 5: Comparison of the change-of-variable (COV) approach and EAD (Algorithm
4) for solving the elastic-net formulation in (16) on MNIST. ASR means attack success
rate (%). Although these two methods attain similar attack success rates, COV is
not effective in crafting L1-based adversarial examples. Increasing β leads to less L1-
distorted adversarial examples for EAD, whereas the distortion of COV is insensitive
to changes in β.

Best case Average case Worst case
Optimization
method β ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞

COV

0 100 13.93 1.377 0.379 100 22.46 1.972 0.514 99.9 32.3 2.639 0.663
10−5 100 13.92 1.377 0.379 100 22.66 1.98 0.508 99.5 32.33 2.64 0.663
10−4 100 13.91 1.377 0.379 100 23.11 2.013 0.517 100 32.32 2.639 0.664
10−3 100 13.8 1.377 0.381 100 22.42 1.977 0.512 99.9 32.2 2.639 0.664
10−2 100 12.98 1.38 0.389 100 22.27 2.026 0.53 99.5 31.41 2.643 0.673

EAD
(EN rule)

0 100 14.04 1.369 0.376 100 22.63 1.953 0.512 99.8 31.43 2.51 0.644
10−5 100 13.66 1.369 0.378 100 22.6 1.98 0.515 99.9 30.79 2.507 0.648
10−4 100 12.79 1.372 0.388 100 20.98 1.951 0.521 100 29.21 2.514 0.667
10−3 100 9.808 1.427 0.452 100 17.4 2.001 0.594 100 25.52 2.582 0.748
10−2 100 7.271 1.718 0.674 100 13.56 2.395 0.852 100 20.77 3.021 0.976

Figure 6: Comparison of EN and L1 decision rules in EAD on MNIST with varying L1

regularization parameter β (average case). Comparing to the EN rule, for the same
β the L1 rule attains less L1 distortion but may incur more L2 and L∞ distortions.

CIFAR-10 this β value significantly reduces the L1 distortion while having comparable

L2 and L∞ distortions to the case of β = 0 (i.e., without L1 regularization).

4.3.4 MNIST, CIFAR-10, and ImageNet

We compare EAD with the comparative methods in terms of attack success rate and

different distortion metrics on attacking the considered DNNs trained on MNIST,

CIFAR-10 and ImageNet. Table 6 summarizes their average-case performance. It is

observed that FGM methods fail to yield successful adversarial examples (i.e., low

ASR), and the corresponding distortion metrics are significantly larger than other

methods. On the other hand, the C&W attack, I-FGM and EAD all lead to 100%
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Table 6: Comparison of different attacks on MNIST, CIFAR-10 and ImageNet (aver-
age case). ASR means attack success rate (%). The distortion metrics are averaged
over successful examples. EAD, the C&W attack, and I-FGM-L∞ attain the least
L1, L2, and L∞ distorted adversarial examples, respectively.

MNIST CIFAR-10 ImageNet
Attack method ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
C&W (L2) 100 22.46 1.972 0.514 100 13.62 0.392 0.044 100 232.2 0.705 0.03
FGM-L1 39 53.5 4.186 0.782 48.8 51.97 1.48 0.152 1 61 0.187 0.007
FGM-L2 34.6 39.15 3.284 0.747 42.8 39.5 1.157 0.136 1 2338 6.823 0.25
FGM-L∞ 42.5 127.2 6.09 0.296 52.3 127.81 2.373 0.047 3 3655 7.102 0.014
I-FGM-L1 100 32.94 2.606 0.591 100 17.53 0.502 0.055 77 526.4 1.609 0.054
I-FGM-L2 100 30.32 2.41 0.561 100 17.12 0.489 0.054 100 774.1 2.358 0.086
I-FGM-L∞ 100 71.39 3.472 0.227 100 33.3 0.68 0.018 100 864.2 2.079 0.01
EAD (EN rule) 100 17.4 2.001 0.594 100 8.18 0.502 0.097 100 69.47 1.563 0.238
EAD (L1 rule) 100 14.11 2.211 0.768 100 6.066 0.613 0.17 100 40.9 1.598 0.293

attack success rate. Furthermore, EAD, the C&W method, and I-FGM-L∞ attain

the least L1, L2, and L∞ distorted adversarial examples, respectively. We note that

EAD significantly outperforms the existing L1-based method (I-FGM-L1). Compared

to I-FGM-L1, EAD with the EN decision rule reduces the L1 distortion by roughly

47% on MNIST, 53% on CIFAR-10 and 87% on ImageNet. We also observe that

EAD with the L1 decision rule can further reduce the L1 distortion but at the price

of noticeable increase in the L2 and L∞ distortion metrics.

Notably, despite having large L2 and L∞ distortion metrics, the adversarial examples

crafted by EAD with the L1 rule can still attain 100% ASRs in all datasets, which

implies the L2 and L∞ distortion metrics are insufficient for evaluating the robustness

of neural networks. Moreover, the attack results in Table 6 suggest that EAD can

yield a set of distinct adversarial examples that are fundamentally different from L2

or L∞ based examples. Similar to the C&W method and I-FGM, the adversarial

examples from EAD are also visually indistinguishable.

4.3.5 Complementing Adversarial Training

To further validate the difference between L1-based and L2-based adversarial exam-

ples, we test their performance in adversarial training on MNIST. We randomly select
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Table 7: Adversarial training using the C&W attack and EAD (L1 rule) on MNIST.
ASR means attack success rate. Incorporating L1 examples complements adversarial
training and enhances attack difficulty in terms of distortion.

Attack
method

Adversarial
training

Average case
ASR L1 L2 L∞

C&W
(L2)

None 100 22.46 1.972 0.514
EAD 100 26.11 2.468 0.643
C&W 100 24.97 2.47 0.684
EAD + C&W 100 27.32 2.513 0.653

EAD
(L1 rule)

None 100 14.11 2.211 0.768
EAD 100 17.04 2.653 0.86
C&W 100 15.49 2.628 0.892
EAD + C&W 100 16.83 2.66 0.87

1000 images from the training set and use the C&W attack and EAD (L1 rule) to

generate adversarial examples for all incorrect labels, leading to 9000 adversarial ex-

amples in total for each method. We then separately augment the original training set

with these examples to retrain the network and test its robustness on the testing set,

as summarized in Table 7. For adversarial training with any single method, although

both attacks still attain a 100% success rate in the average case, the network is more

tolerable to adversarial perturbations, as all distortion metrics increase significantly

when compared to the null case. We also observe that joint adversarial training with

EAD and the C&W method can further increase the L1 and L2 distortions against

the C&W attack and the L2 distortion against EAD, suggesting that the L1-based

examples crafted by EAD can complement adversarial training.

4.3.6 Breaking Defensive Distillation

In addition to breaking undefended DNNs via adversarial examples, here we show

that EAD can also break defensively distilled DNNs. Defensive distillation [55] is

a standard defense technique that retrains the network with class label probabili-

ties predicted by the original network, soft labels, and introduces the temperature

parameter T in the softmax layer to enhance its robustness to adversarial pertur-

bations. Similar to the state-of-the-art attack (the C&W method), Figure 7 shows

that EAD can attain 100% attack success rate for different values of T on MNIST
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Figure 7: Attack success rate (average case) of the C&W method and EAD on MNIST
and CIFAR-10 with respect to varying temperature parameter T for defensive distil-
lation. Both methods can successfully break defensive distillation.

and CIFAR-10. Moreover, since the C&W attack formulation is a special case of

the EAD formulation in (16) when β = 0, successfully breaking defensive distillation

using EAD suggests new ways of crafting effective adversarial examples by varying

the L1 regularization parameter β.

4.3.7 Transfer Attacks in the No-box Setting

4.3.7.1 Defensive Distillation

It has been shown in [49] that the C&W attack can be made highly transferable from

an undefended network to a defensively distilled network by tuning the confidence

parameter κ in (9). Following [49], we adopt the same experiment setting for attack

transferability on MNIST, as MNIST is the most difficult dataset to attack in terms

of the average distortion per image pixel from Table 6.

Fixing κ, adversarial examples generated from the original (undefended) network

are used to attack the defensively distilled network with the temperature parameter

T = 100 [55]. The attack success rate (ASR) of EAD, the C&W method and I-FGM

are shown in Figure 8. When κ = 0, all methods attain low ASR and hence do not

produce transferable adversarial examples. The ASR of EAD and the C&W method
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Figure 8: Attack transferability (average case) from the undefended network to the
defensively distilled network on MNIST by varying κ. EAD can attain nearly 99%
attack success rate (ASR) when κ = 50, whereas the top ASR of the C&W attack is
nearly 88% when κ = 40.

improves when we set κ > 0, whereas I-FGM’s ASR remains low (less than 2%) since

the attack does not have such a parameter for transferability.

Notably, EAD can attain nearly 99% ASR when κ = 50, whereas the top ASR

of the C&W method is nearly 88% when κ = 40. This implies improved attack

transferability when using the adversarial examples crafted by EAD, which can be

explained by the fact that the ISTA operation in (17) is a robust version of the C&W

attack via shrinking and thresholding. We also find that setting κ too large may

mitigate the ASR of transfer attacks for both EAD and the C&W method, as the

optimizer may fail to find an adversarial example that minimizes the loss function f

in (9) for large κ. The complete attack transferability results are given in Table 8.

4.3.7.2 Madry Defense Model

The Madry Defense Model is a sufficiently high capacity network trained against

the strongest possible adversary, which they deem to be Projected Gradient Descent

(PGD) starting from random perturbations around the natural examples [43]. For

the MNIST model, 40 iterations of PGD were run, with a step size of 0.01. Gradient
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Table 8: Comparison of attack transferability from the undefended network to the
defensively distilled network (T = 100) on MNIST with varying transferability pa-
rameter κ. ASR means attack success rate (%). N.A. means not “not available” due
to zero ASR. There is no κ parameter for I-FGM.

Best case Average case Worst case
Method κ ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
I-FGM-L1 None 12.2 18.39 1.604 0.418 1.6 19 1.658 0.43 0 N.A. N.A. N.A.
I-FGM-L2 None 9.8 17.77 1.537 0.395 1.3 17.25 1.533 0.408 0 N.A. N.A. N.A.
I-FGM-L∞ None 14.7 46.38 2.311 0.145 1.7 48.3 2.44 0.158 0 N.A. N.A. N.A.

C&W
(L2)

0 5.4 11.13 1.103 0.338 1.1 10.16 1.033 0.343 0 N.A. N.A. N.A.
5 16.6 15.58 1.491 0.424 3.4 17.35 1.615 0.46 0 N.A. N.A. N.A.
10 42.2 21.94 2.033 0.525 6.5 21.97 2.001 0.527 0 N.A. N.A. N.A.
15 74.2 27.65 2.491 0.603 22.6 32.54 2.869 0.671 0.4 56.93 4.628 0.843
20 92.9 29.71 2.665 0.639 44.4 38.34 3.322 0.745 2.4 54.25 4.708 0.91
25 98.7 30.12 2.719 0.664 62.9 45.41 3.837 0.805 10.9 71.22 5.946 0.972
30 99.8 31.17 2.829 0.69 78.1 49.63 4.15 0.847 23 85.93 6.923 0.987
35 100 33.27 3.012 0.727 84.2 55.56 4.583 0.886 30.5 105.9 8.072 0.993
40 100 36.13 3.255 0.772 87.4 61.25 4.98 0.918 21 125.2 9.09 0.995
45 100 39.86 3.553 0.818 85.2 67.82 5.43 0.936 7.4 146.9 10.21 0.996
50 100 44.2 3.892 0.868 80.6 70.87 5.639 0.953 0.5 158.4 10.8 0.996
55 100 49.37 4.284 0.907 73 76.77 6.034 0.969 0 N.A. N.A. N.A.
60 100 54.97 4.703 0.937 67.9 82.07 6.395 0.976 0 N.A. N.A. N.A.

EAD
(EN rule)

0 6 8.373 1.197 0.426 0.6 4.876 0.813 0.307 0 N.A. N.A. N.A.
5 18.2 11.45 1.547 0.515 2.5 13.07 1.691 0.549 0 N.A. N.A. N.A.
10 39.5 15.36 1.916 0.59 8.4 16.45 1.989 0.6 0 N.A. N.A. N.A.
15 69.2 19.18 2.263 0.651 19.2 22.74 2.531 0.697 0.4 31.18 3.238 0.846
20 89.5 21.98 2.519 0.692 37 28.36 2.99 0.778 1.8 39.91 3.951 0.897
25 98.3 23.92 2.694 0.724 58 34.14 3.445 0.831 7.9 49.12 4.65 0.973
30 99.9 25.52 2.838 0.748 76.3 40.2 3.909 0.884 23.7 59.9 5.404 0.993
35 100 27.42 3.009 0.778 87.9 45.62 4.324 0.92 47.4 70.93 6.176 0.999
40 100 30.23 3.248 0.814 95.2 52.33 4.805 0.945 71.3 83.19 6.981 1
45 100 33.61 3.526 0.857 98 57.75 5.194 0.965 86.2 98.51 7.904 1
50 100 37.59 3.843 0.899 98.6 66.22 5.758 0.978 87 115.7 8.851 1
55 100 42.01 4.193 0.934 94.4 70.66 6.09 0.986 44.2 127 9.487 1
60 100 46.7 4.562 0.961 90 75.59 6.419 0.992 13.3 140.35 10.3 1

EAD
(L1 rule)

0 6 6.392 1.431 0.628 0.5 6.57 1.565 0.678 0 N.A. N.A. N.A.
5 19 8.914 1.807 0.728 3.2 9.717 1.884 0.738 0 N.A. N.A. N.A.
10 40.6 12.16 2.154 0.773 7.5 13.74 2.27 0.8 0 N.A. N.A. N.A.
15 70.5 15.39 2.481 0.809 19 18.12 2.689 0.865 0.3 23.15 3.024 0.884
20 90 17.73 2.718 0.83 39.4 24.15 3.182 0.902 1.9 38.22 4.173 0.979
25 98.6 19.71 2.897 0.851 59.3 30.33 3.652 0.933 7.9 45.74 4.818 0.997
30 99.8 21.1 3.023 0.862 76.9 37.38 4.191 0.954 22.2 55.54 5.529 1
35 100 23 3.186 0.882 89.3 41.13 4.468 0.968 46.8 66.76 6.256 1
40 100 25.86 3.406 0.904 96.3 47.54 4.913 0.979 69.9 80.05 7.064 1
45 100 29.4 3.665 0.931 97.6 55.16 5.399 0.988 85.8 96.05 7.94 1
50 100 33.71 3.957 0.95 98.1 62.01 5.856 0.992 85.7 113.6 8.845 1
55 100 38.09 4.293 0.971 93.6 65.79 6.112 0.995 43.8 126.4 9.519 1
60 100 42.7 4.66 0.985 89.6 72.49 6.572 0.997 13 141.3 10.36 1

steps were taken in the L∞ norm. The network was trained and evaluated against

perturbations of size no greater than ϵ = 0.3.
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Table 9: Results of training the Madry Defense Model with a PGD adversary con-
strained under varying ϵ. ‘Nat Test Accuracy’ denotes accuracy on classifying original
images. ‘Adv Test Accuracy’ denotes accuracy on classifying adversarial images gen-
erated by the same PGD adversary as was used for training.

Epsilon Nat Test Accuracy Adv Test Accuracy
0.1 99.38 95.53
0.2 99 92.65
0.3 98.16 91.14
0.4 11.35 11.35
0.5 11.35 11.35
0.6 11.35 11.35
0.7 10.28 10.28
0.8 11.35 11.35
0.9 11.35 11.35
1 11.35 11.35

Due to this, it is expected that the existing Madry Defense Model performs poorly

against PGD attacks with ϵ > 0.3. As suggested in [43], the PGD attack was run for 40

iterations, and to account for varying ϵ, the stepsize was set to 2ϵ/40. The adversarial

retraining results are shown in Table 9. These results suggest that the Madry Defense

Model can not be successfully adversarially trained using a PGD adversary with ϵ

> 0.3. This is understandable as with such large ϵ, the visual distortion is clearly

perceptible.

We test the transferability properties of attacks in both the targeted case and non-

targeted case against the adversarially trained model. We test the ability for attacks

to generate transferable adversarial examples using an ensemble of undefended mod-

els, where the ensemble size is set to 3. We expect that if an adversarial example

remains adversarial to multiple models, it is more likely to transfer to other unseen

models [51,73]. The undefended models we use are naturally trained networks of the

same architecture as the defended model; the architecture was provided in the com-

petition. For generating adversarial examples, we compare the optimization-based

approach and the iterative fast gradient-based approach using EAD (with the EN

decision rule) and PGD, respectively.

In our experiment, 1000 random samples from the MNIST test set were used. For

the targeted case, a target class that is different from the original one was randomly
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selected for each input image. The highest attack success rate (ASR) in both the

targeted and non-targeted cases was yielded at β = 0.01. This was in fact the largest

β tested, indicating the importance of minimizing the L1 distortion for generating

transferable adversarial examples. Furthermore, the improvement in ASR with in-

creasing β was seen to be more significant at lower κ, indicating the importance of

minimizing the L1 distortion for generating transferable adversarial examples with

minimal visual distortion. For PGD and I-FGM, ϵ was tuned from 0.1 to 1.0 at 0.1

increments.

In Table 10, the results for tuning κ for C&W and EAD at β = 0.01 are provided, and

are presented with the results for PGD and I-FGM at the lowest ϵ values at which

the highest ASR was yielded, for comparison. It is observed that in both the targeted

case and the non-targeted case, EAD outperforms C&W at all κ. Furthermore, in

the targeted case, at the optimal κ = 50, EAD’s adversarial examples surprisingly

have lower average L2 distortion.

In the targeted case, EAD outperforms PGD and I-FGM at κ = 30 with much lower

L1 and L2 distortion. In the non-targeted case, PGD and I-FGM yield similar ASR

at lower L∞ distortion. However, we argue that in the latter case the drastic increase

in induced L1 and L2 distortion of PGD and I-FGM to generate said adversarial

examples indicates greater visual distortion, and thus that the generated examples

are less adversarial in nature.

We find that adversarial examples generated by PGD even at low ϵ such as 0.3, at

which the attack performance is weak, have visually apparent noise. In Figure 9,

adversarial examples generated by EAD are directly compared to those generated by

PGD with similar average L∞ distortion. EAD tuned to the optimal β (0.01) was

used to generate adversarial examples with κ = 10. As can be seen in Table 10, the

average L∞ distortion under this configuration is 0.8. Therefore, adversarial examples
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Table 10: Comparison of tuned PGD, I-FGM, C&W, and EAD adversarial examples
at various confidence levels. ASR means attack success rate (%). The distortion
metrics are averaged over successful examples.

Targeted Non-Targeted
Attack Method Confidence ASR L1 L2 L∞ ASR L1 L2 L∞
PGD None 68.5 188.3 8.947 0.6 99.9 270.5 13.27 0.8
I-FGM None 75.1 144.5 7.406 0.915 99.8 199.4 10.66 0.9

C&W

10 1.1 34.15 2.482 0.548 4.9 23.23 1.702 0.424
30 69.4 68.14 4.864 0.871 71.3 51.04 3.698 0.756
50 92.9 117.45 8.041 0.987 99.1 78.65 5.598 0.937
70 34.8 169.7 10.88 0.994 99 119.4 8.097 0.99

EAD

10 27.4 25.79 3.209 0.876 39.9 19.19 2.636 0.8
30 85.8 49.64 5.179 0.995 94.5 34.28 4.192 0.971
50 98.5 93.46 7.711 1 99.6 57.68 5.839 0.999
70 67.2 148.9 10.36 1 99.8 90.84 7.719 1

were generated by PGD with ϵ = 0.8. Clearly, performing elastic-net minimization

aids in minimizing visual distortion, even when the L∞ distortion is large.

Figure 9: Visual illustration of adversarial examples crafted in the non-targeted case
by EAD and PGD with similar average L∞ distortion.

.

4.3.7.3 Feature Squeezing

Feature squeezing relies on applying input transformations to reduce the degrees of

freedom available to an adversary by “squeezing” out unnecessary input features.

The authors in [58] propose a detection method using such input transformations by

relying on the intuition that if the original and squeezed inputs produce substantially

different outputs from the model, the input is likely to be adversarial. By comparing

the difference between predictions with a selected threshold value, the system is de-
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Table 11: Comparison of PGD, C&W, and EAD results against the MNIST joint
detector at various confidence levels. ASR means attack success rate (%). The
distortion metrics are averaged over successful examples.

Non-Targeted Targeted
Next LL

Attack Method Confidence ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
PGD None 100% 196.0 10.17 0.900 78% 169.8 8.225 0.881 67% 188.1 9.091 0.991

C&W

10 0% 21.05 1.962 0.568 0% 31.94 2.748 0.655 0% 37.78 3.207 0.732
20 15% 27,21 2.472 0.665 10% 40.51 3.419 0.763 24% 47.86 3.977 0.820
30 64% 34.30 3.019 0.754 67% 47.43 3.973 0.842 91% 59.56 4.811 0.888
40 87% 42.04 3.590 0.831 97% 61.12 4.938 0.922 100% 72.88 5.715 0.939

EAD

10 24% 11.44 2.286 0.879 7% 19.69 3.114 0.942 7% 23.99 3.481 0.955
20 80% 15.26 2.766 0.921 65% 26.80 3.752 0.964 78% 31.81 4.122 0.972
30 95% 20.17 3.264 0.957 97% 35.50 4.449 0.983 93% 39.68 4.769 0.991
40 97% 26.50 3.803 0.972 100% 44.75 5.114 0.992 100% 50.21 5.532 0.997

Table 12: Comparison of I-FGM, C&W, and EAD results against the CIFAR-10
joint detector at various confidence levels. ASR means attack success rate (%). The
distortion metrics are averaged over successful examples.

Non-Targeted Targeted
Next LL

Attack Method Confidence ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
I-FGM None 100% 81.18 1.833 0.070 100% 212.0 4.979 0.299 100% 214.9 5.042 0.300

C&W

10 32% 10.51 0.274 0.033 0% 14.25 0.368 0.042 0% 17.36 0.445 0.049
30 78% 28.80 0.712 0.073 51% 37.11 0.901 0.083 6% 41.51 1.006 0.093
50 96% 59.32 1.416 0.130 98% 82.54 1.954 0.169 94% 90.17 2.129 0.179
70 100% 120.2 2.827 0.243 100% 201.2 4.713 0.375 100% 212.2 4.962 0.403

EAD

10 46% 6.371 0.379 0.079 10% 8.187 0.508 0.109 0% 10.17 0.597 0.121
30 78% 18.94 0.876 0.146 51% 25.98 1.090 0.166 23% 29.58 1.209 0.175
50 94% 42.36 1.550 0.206 96% 62.90 2.094 0.247 90% 70.23 2.296 0.275
70 100% 83.14 2.670 0.317 100% 157.9 4.466 0.477 100% 172.8 4.811 0.502

signed to output the correct prediction for legitimate examples and reject adversarial

inputs. By combining multiple squeezers in a joint detection framework, the authors

claim that the system can can successfully detect adversarial examples from eleven

state-of-the-art methods [58].

Two types of feature squeezing were focused on by the authors in [58]: (i) reducing

the color bit depth of images; and (ii) using smoothing (both local and non-local) to

reduce the variation among pixels. For the detection method, the model’s original

prediction is compared with the prediction on the squeezed sample using the L1

norm. As a defender typically does not know the exact attack method, multiple

feature squeezers are combined by outputting the maximum distance. The threshold
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Figure 10: Randomly selected set of non-
targeted MNIST adversarial examples gen-
erated by EAD. First row: Original, Sub-
sequent rows: κ = {10, 20, 30}.

Figure 11: Randomly selected set of non-
targeted CIFAR-10 adversarial examples
generated by EAD. First row: Original,
Subsequent rows: κ = {10, 30, 50}.

Figure 12: Randomly selected set of non-
targeted MNIST adversarial examples gen-
erated by I-FGM.
First row: Original, Subsequent rows: ϵ =
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8.0.9, 1.0}.

Figure 13: Randomly selected set of non-
targeted CIFAR-10 adversarial examples
generated by I-FGM.
First row: Original, Subsequent rows: ϵ =
{0.008, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5}.

is selected targeting a false positive rate below 5% by choosing a threshold that is

exceeded by no more than 5% of legitimate samples.

For MNIST, the joint detector consists of a 1-bit depth squeezer with 2x2 median

smoothing. For CIFAR-10, the joint detector consists of a 5-bit depth squeezer with

2x2 median smoothing and a non-local means filter with a 13x13 search window, 3x3

patch size, and a Gaussian kernel bandwidth size of 2. We use the same thresholds

as used in [58]. We generate adversarial examples using the EAD [2] (with the EN

decision rule) and I-FGM [46] attacks.
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We randomly sample 100 images from the MNIST and CIFAR-10 test sets. For each

dataset, we use the same pre-trained state-of-the-art models as used in [58]. We

generate adversarial examples in the non-targeted case, force network to misclassify,

and in the targeted case, force network to misclassify to a target class t. As done

in [58], we try two different targets, the Next class (t = label + 1 mod # of classes)

and the least-likely class (LL).

The generated adversarial examples are tested against the proposed MNIST and

CIFAR-10 joint detection configurations. In Tables 11 and 12, the results of tuning

κ for C&W and EAD are provided, and are presented with the results for I-FGM

at the lowest ϵ value at which the highest attack success rate (ASR) was yielded,

against the MNIST and CIFAR-10 joint detectors, respectively. In all cases, EAD

outperforms the C&W L2 attack, particularly at lower confidence levels, indicating

the importance of minimizing the L1 distortion for generating robust adversarial

examples with minimal visual distortion. Specifically, we find that with enough κ,

each attack is able to achieve near 100% ASR against the joint detectors.

In Figure 10, non-targeted MNIST adversarial examples generated by EAD are shown

at κ = {10, 20, 30}. In Figure 11, non-targeted CIFAR-10 adversarial examples gener-

ated by EAD are shown at κ = {10, 30, 50}. In Figure 12, non-targeted MNIST adver-

sarial examples generated by I-FGM are shown at ϵ = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8.0.9, 1.0}.

In Figure 13, non-targeted CIFAR-10 adversarial examples generated by I-FGM are

shown at ϵ = {0.008, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5}. These figures indicate that ad-

versarial examples generated by EAD at high κ, which bypass the joint feature squeez-

ing detector, have minimal visual distortion. This holds true for adversarial examples

generated by I-FGM with high ϵ on CIFAR-10, but not on MNIST.
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5 Conclusion

Gradient-based adversarial attacks have been readily applied in the white-box case,

where the attacker has complete access to the target model and can compute the

gradients via back-propagation. We have extended such approaches to the black-box

case, where only query access is given to the attacker, with ZOO, which uses the finite

difference method to estimate the gradients for optimization from the output scores.

We also have improved the state-of-the-art in no-box attacks, where the attacker isn’t

even capable of querying the target model, with EAD, which incorporates L1 mini-

mization in order to encourage sparsity in the perturbation and hence generate more

robust transferable adversarial examples. Through experimental results attacking

state-of-the-art models trained on the MNIST, CIFAR-10, and ImageNet datasets,

and state-of-the-art defenses for each dataset, we have validated the effectiveness of

the proposed attacks.

Regarding future work, it is worth exploring whether gradient-free optimization strate-

gies, like genetic algorithms, can be applied for generating adversarial examples in

order to avoid the costly procedure of estimating the gradient. Furthermore, the

black-box attack setting discussed in this work assumed the target model’s output

consists of each classes’ confidence scores, however in many real-world scenarios, only

the label is given. Formulating attacks which can find adversarial examples operating

solely on label information is certainly of interest. Lastly, the experimental results

presented here are extensive, however it is worth noting that in all experiments,

solely the image domain has been considered. Work in other domains, such as text

and speech, would aid in our understanding of the problem of adversarial examples.
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A Code Sample

The remaining pages contain a representative sample of the code used for the pre-
sented experiments, detailing the ZOO and EAD (with the EN decision rule) Attack
Algorithms.
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A.1 ZOO Attack

## l2_attack_black.py -- attack a black-box network optimizing for
l_2 distance↪→

##
import sys
import os
import tensorflow as tf
import numpy as np
import scipy.misc
from numba import jit
import math
import time

BINARY_SEARCH_STEPS = 1 # number of times to adjust the constant
with binary search↪→

MAX_ITERATIONS = 10000 # number of iterations to perform gradient
descent↪→

ABORT_EARLY = True # if we stop improving, abort gradient descent
early↪→

LEARNING_RATE = 2e-3 # larger values converge faster to less
accurate results↪→

TARGETED = True # should we target one specific class? or
just be wrong?↪→

CONFIDENCE = 0 # how strong the adversarial example should be
INITIAL_CONST = 0.5 # the initial constant c to pick as a first

guess↪→

@jit(nopython=True)
def coordinate_ADAM(losses, indice, grad, hess, batch_size, mt_arr,

vt_arr, real_modifier, up, down, lr, adam_epoch, beta1, beta2,
proj):

↪→

↪→

# indice = np.array(range(0, 3*299*299), dtype = np.int32)
for i in range(batch_size):

grad[i] = (losses[i*2+1] - losses[i*2+2]) / 0.0002
# true_grads = self.sess.run(self.grad_op,

feed_dict={self.modifier: self.real_modifier})↪→
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# true_grads, losses, l2s, scores, nimgs =
self.sess.run([self.grad_op, self.loss, self.l2dist,
self.output, self.newimg], feed_dict={self.modifier:
self.real_modifier})

↪→

↪→

↪→

# grad = true_grads[0].reshape(-1)[indice]
# print(grad, true_grads[0].reshape(-1)[indice])
# self.real_modifier.reshape(-1)[indice] -= self.LEARNING_RATE *

grad↪→

# self.real_modifier -= self.LEARNING_RATE * true_grads[0]
# ADAM update
mt = mt_arr[indice]
mt = beta1 * mt + (1 - beta1) * grad
mt_arr[indice] = mt
vt = vt_arr[indice]
vt = beta2 * vt + (1 - beta2) * (grad * grad)
vt_arr[indice] = vt
# epoch is an array; for each index we can have a different epoch

number↪→

epoch = adam_epoch[indice]
corr = (np.sqrt(1 - np.power(beta2,epoch))) / (1 - np.power(beta1,

epoch))↪→

m = real_modifier.reshape(-1)
old_val = m[indice]
old_val -= lr * corr * mt / (np.sqrt(vt) + 1e-8)
# set it back to [-0.5, +0.5] region
if proj:

old_val = np.maximum(np.minimum(old_val, up[indice]),
down[indice])↪→

# print(grad)
# print(old_val - m[indice])
m[indice] = old_val
adam_epoch[indice] = epoch + 1

@jit(nopython=True)
def coordinate_Newton(losses, indice, grad, hess, batch_size, mt_arr,

vt_arr, real_modifier, up, down, lr, adam_epoch, beta1, beta2,
proj):

↪→

↪→

# def sign(x):
# return np.piecewise(x, [x < 0, x >= 0], [-1, 1])
cur_loss = losses[0]
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for i in range(batch_size):
grad[i] = (losses[i*2+1] - losses[i*2+2]) / 0.0002
hess[i] = (losses[i*2+1] - 2 * cur_loss + losses[i*2+2]) /

(0.0001 * 0.0001)↪→

# print("New epoch:")
# print('grad', grad)
# print('hess', hess)
# hess[hess < 0] = 1.0
# hess[np.abs(hess) < 0.1] = sign(hess[np.abs(hess) < 0.1]) * 0.1
# negative hessian cannot provide second order information, just

do a gradient descent↪→

hess[hess < 0] = 1.0
# hessian too small, could be numerical problems
hess[hess < 0.1] = 0.1
# print(hess)
m = real_modifier.reshape(-1)
old_val = m[indice]
old_val -= lr * grad / hess
# set it back to [-0.5, +0.5] region
if proj:

old_val = np.maximum(np.minimum(old_val, up[indice]),
down[indice])↪→

# print('delta', old_val - m[indice])
m[indice] = old_val
# print(m[indice])

@jit(nopython=True)
def coordinate_Newton_ADAM(losses, indice, grad, hess, batch_size,

mt_arr, vt_arr, real_modifier, up, down, lr, adam_epoch, beta1,
beta2, proj):

↪→

↪→

cur_loss = losses[0]
for i in range(batch_size):

grad[i] = (losses[i*2+1] - losses[i*2+2]) / 0.0002
hess[i] = (losses[i*2+1] - 2 * cur_loss + losses[i*2+2]) /

(0.0001 * 0.0001)↪→

# print("New epoch:")
# print(grad)
# print(hess)
# positive hessian, using newton's method
hess_indice = (hess >= 0)
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# print(hess_indice)
# negative hessian, using ADAM
adam_indice = (hess < 0)
# print(adam_indice)
# print(sum(hess_indice), sum(adam_indice))
hess[hess < 0] = 1.0
hess[hess < 0.1] = 0.1
# hess[np.abs(hess) < 0.1] = sign(hess[np.abs(hess) < 0.1]) * 0.1
# print(adam_indice)
# Newton's Method
m = real_modifier.reshape(-1)
old_val = m[indice[hess_indice]]
old_val -= lr * grad[hess_indice] / hess[hess_indice]
# set it back to [-0.5, +0.5] region
if proj:

old_val = np.maximum(np.minimum(old_val,
up[indice[hess_indice]]), down[indice[hess_indice]])↪→

m[indice[hess_indice]] = old_val
# ADMM
mt = mt_arr[indice]
mt = beta1 * mt + (1 - beta1) * grad
mt_arr[indice] = mt
vt = vt_arr[indice]
vt = beta2 * vt + (1 - beta2) * (grad * grad)
vt_arr[indice] = vt
# epoch is an array; for each index we can have a different epoch

number↪→

epoch = adam_epoch[indice]
corr = (np.sqrt(1 - np.power(beta2,epoch[adam_indice]))) / (1 -

np.power(beta1, epoch[adam_indice]))↪→

old_val = m[indice[adam_indice]]
old_val -= lr * corr * mt[adam_indice] / (np.sqrt(vt[adam_indice])

+ 1e-8)↪→

# old_val -= lr * grad[adam_indice]
# set it back to [-0.5, +0.5] region
if proj:

old_val = np.maximum(np.minimum(old_val,
up[indice[adam_indice]]), down[indice[adam_indice]])↪→

m[indice[adam_indice]] = old_val
adam_epoch[indice] = epoch + 1
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# print(m[indice])

class BlackBoxL2:
def __init__(self, sess, model, batch_size=1, confidence =

CONFIDENCE,↪→

targeted = TARGETED, learning_rate = LEARNING_RATE,
binary_search_steps = BINARY_SEARCH_STEPS,

max_iterations = MAX_ITERATIONS, print_every =
100, early_stop_iters = 0,

↪→

↪→

abort_early = ABORT_EARLY,
initial_const = INITIAL_CONST,
use_log = False, use_tanh = True, use_resize = False,

adam_beta1 = 0.9, adam_beta2 = 0.999,
reset_adam_after_found = False,

↪→

↪→

solver = "adam", save_ckpts = "", load_checkpoint =
"", start_iter = 0,↪→

init_size = 32, use_importance = True):
"""
The L_2 optimized attack.

This attack is the most efficient and should be used as the
primary↪→

attack to evaluate potential defenses.

Returns adversarial examples for the supplied model.

confidence: Confidence of adversarial examples: higher
produces examples↪→

that are farther away, but more strongly classified as
adversarial.↪→

batch_size: Number of gradient evaluations to run
simultaneously.↪→

targeted: True if we should perform a targetted attack, False
otherwise.↪→

learning_rate: The learning rate for the attack algorithm.
Smaller values↪→

produce better results but are slower to converge.
binary_search_steps: The number of times we perform binary

search to↪→
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find the optimal tradeoff-constant between distance and
confidence.↪→

max_iterations: The maximum number of iterations. Larger
values are more↪→

accurate; setting too small will require a large learning
rate and will↪→

produce poor results.
abort_early: If true, allows early aborts if gradient descent

gets stuck.↪→

initial_const: The initial tradeoff-constant to use to tune
the relative↪→

importance of distance and confidence. If
binary_search_steps is large,↪→

the initial constant is not important.
"""

image_size, num_channels, num_labels = model.image_size,
model.num_channels, model.num_labels↪→

self.model = model
self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.print_every = print_every
self.early_stop_iters = early_stop_iters if early_stop_iters

!= 0 else max_iterations // 10↪→

print("early stop:", self.early_stop_iters)
self.BINARY_SEARCH_STEPS = binary_search_steps
self.ABORT_EARLY = abort_early
self.CONFIDENCE = confidence
self.initial_const = initial_const
self.start_iter = start_iter
self.batch_size = batch_size
self.num_channels = num_channels
self.resize_init_size = init_size
self.use_importance = use_importance
if use_resize:

self.small_x = self.resize_init_size
self.small_y = self.resize_init_size

else:
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self.small_x = image_size
self.small_y = image_size

self.use_tanh = use_tanh
self.use_resize = use_resize
self.save_ckpts = save_ckpts
if save_ckpts:

os.system("mkdir -p {}".format(save_ckpts))

self.repeat = binary_search_steps >= 10

# each batch has a different modifier value (see below) to
evaluate↪→

# small_shape = (None,self.small_x,self.small_y,num_channels)
shape = (None,image_size,image_size,num_channels)
single_shape = (image_size, image_size, num_channels)
small_single_shape = (self.small_x, self.small_y, num_channels)

# the variable we're going to optimize over
# support multiple batches
# support any size image, will be resized to model native size
if self.use_resize:

self.modifier = tf.placeholder(tf.float32, shape=(None,
None, None, None))↪→

# scaled up image
self.scaled_modifier =

tf.image.resize_images(self.modifier, [image_size,
image_size])

↪→

↪→

# operator used for resizing image
self.resize_size_x = tf.placeholder(tf.int32)
self.resize_size_y = tf.placeholder(tf.int32)
self.resize_input = tf.placeholder(tf.float32, shape=(1,

None, None, None))↪→

self.resize_op = tf.image.resize_images(self.resize_input,
[self.resize_size_x, self.resize_size_y])↪→

else:
self.modifier = tf.placeholder(tf.float32, shape=(None,

image_size, image_size, num_channels))↪→

# no resize
self.scaled_modifier = self.modifier
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# the real variable, initialized to 0
self.load_checkpoint = load_checkpoint
if load_checkpoint:

# if checkpoint is incorrect reshape will fail
print("Using checkpint", load_checkpoint)
self.real_modifier = np.load(load_checkpoint).reshape((1,)

+ small_single_shape)↪→

else:
self.real_modifier = np.zeros((1,) + small_single_shape,

dtype=np.float32)↪→

# self.real_modifier = np.random.randn(image_size * image_size
* num_channels).astype(np.float32).reshape((1,) +
single_shape)

↪→

↪→

# self.real_modifier /= np.linalg.norm(self.real_modifier)
# these are variables to be more efficient in sending data to

tf↪→

# we only work on 1 image at once; the batch is for evaluation
loss at different modifiers↪→

self.timg = tf.Variable(np.zeros(single_shape),
dtype=tf.float32)↪→

self.tlab = tf.Variable(np.zeros(num_labels), dtype=tf.float32)
self.const = tf.Variable(0.0, dtype=tf.float32)

# and here's what we use to assign them
self.assign_timg = tf.placeholder(tf.float32, single_shape)
self.assign_tlab = tf.placeholder(tf.float32, num_labels)
self.assign_const = tf.placeholder(tf.float32)

# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
# broadcast self.timg to every dimension of modifier
if use_tanh:

self.newimg = tf.tanh(self.scaled_modifier + self.timg)/2
else:

self.newimg = self.scaled_modifier + self.timg

# prediction BEFORE-SOFTMAX of the model
# now we have output at #batch_size different modifiers
# the output should have shape (batch_size, num_labels)
self.output = model.predict(self.newimg)
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# distance to the input data
if use_tanh:

self.l2dist = tf.reduce_sum(tf.square(self.newimg-tf.tanh ⌋

(self.timg)/2),
[1,2,3])

↪→

↪→

else:
self.l2dist = tf.reduce_sum(tf.square(self.newimg -

self.timg), [1,2,3])↪→

# compute the probability of the label class versus the
maximum other↪→

# self.tlab * self.output selects the Z value of real class
# because self.tlab is an one-hot vector
# the reduce_sum removes extra zeros, now get a vector of size

#batch_size↪→

self.real = tf.reduce_sum((self.tlab)*self.output,1)
# (1-self.tlab)*self.output gets all Z values for other

classes↪→

# Because soft Z values are negative, it is possible that all
Z values are less than 0↪→

# and we mistakenly select the real class as the max. So we
minus 10000 for real class↪→

self.other = tf.reduce_max((1-self.tlab)*self.output -
(self.tlab*10000),1)↪→

# If self.targeted is true, then the targets represents the
target labels.↪→

# If self.targeted is false, then targets are the original
class labels.↪→

if self.TARGETED:
if use_log:

# loss1 = - tf.log(self.real)
loss1 = tf.maximum(0.0, tf.log(self.other + 1e-30) -

tf.log(self.real + 1e-30))↪→

else:
# if targetted, optimize for making the other class

(real) most likely↪→

loss1 = tf.maximum(0.0,
self.other-self.real+self.CONFIDENCE)↪→

else:
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if use_log:
# loss1 = tf.log(self.real)
loss1 = tf.maximum(0.0, tf.log(self.real + 1e-30) -

tf.log(self.other + 1e-30))↪→

else:
# if untargeted, optimize for making this class least

likely.↪→

loss1 = tf.maximum(0.0,
self.real-self.other+self.CONFIDENCE)↪→

# sum up the losses (output is a vector of #batch_size)
self.loss2 = self.l2dist
self.loss1 = self.const*loss1
self.loss = self.loss1+self.loss2

# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))

# prepare the list of all valid variables
var_size = self.small_x * self.small_y * num_channels
self.use_var_len = var_size
self.var_list = np.array(range(0, self.use_var_len), dtype =

np.int32)↪→

self.used_var_list = np.zeros(var_size, dtype = np.int32)
self.sample_prob = np.ones(var_size, dtype = np.float32) /

var_size↪→

# upper and lower bounds for the modifier
self.modifier_up = np.zeros(var_size, dtype = np.float32)
self.modifier_down = np.zeros(var_size, dtype = np.float32)

# random permutation for coordinate update
self.perm = np.random.permutation(var_size)
self.perm_index = 0

# ADAM status
self.mt = np.zeros(var_size, dtype = np.float32)
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self.vt = np.zeros(var_size, dtype = np.float32)
# self.beta1 = 0.8
# self.beta2 = 0.99
self.beta1 = adam_beta1
self.beta2 = adam_beta2
self.reset_adam_after_found = reset_adam_after_found
self.adam_epoch = np.ones(var_size, dtype = np.int32)
self.stage = 0
# variables used during optimization process
self.grad = np.zeros(batch_size, dtype = np.float32)
self.hess = np.zeros(batch_size, dtype = np.float32)
# for testing
self.grad_op = tf.gradients(self.loss, self.modifier)
# compile numba function
# self.coordinate_ADAM_numba = jit(coordinate_ADAM, nopython

= True)↪→

# self.coordinate_ADAM_numba.recompile()
# print(self.coordinate_ADAM_numba.inspect_llvm())
# np.set_printoptions(threshold=np.nan)
# set solver
solver = solver.lower()
self.solver_name = solver
if solver == "adam":

self.solver = coordinate_ADAM
elif solver == "newton":

self.solver = coordinate_Newton
elif solver == "adam_newton":

self.solver = coordinate_Newton_ADAM
elif solver != "fake_zero":

print("unknown solver", solver)
self.solver = coordinate_ADAM

print("Using", solver, "solver")

def max_pooling(self, image, size):
img_pool = np.copy(image)
img_x = image.shape[0]
img_y = image.shape[1]
for i in range(0, img_x, size):

for j in range(0, img_y, size):
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img_pool[i:i+size, j:j+size] = np.max(image[i:i+size,
j:j+size])↪→

return img_pool

def get_new_prob(self, prev_modifier, gen_double = False):
prev_modifier = np.squeeze(prev_modifier)
old_shape = prev_modifier.shape
if gen_double:

new_shape = (old_shape[0]*2, old_shape[1]*2, old_shape[2])
else:

new_shape = old_shape
prob = np.empty(shape=new_shape, dtype = np.float32)
for i in range(prev_modifier.shape[2]):

image = np.abs(prev_modifier[:,:,i])
image_pool = self.max_pooling(image, old_shape[0] // 8)
if gen_double:

prob[:,:,i] = scipy.misc.imresize(image_pool, 2.0,
'nearest', mode = 'F')↪→

else:
prob[:,:,i] = image_pool

prob /= np.sum(prob)
return prob

def resize_img(self, small_x, small_y, reset_only = False):
self.small_x = small_x
self.small_y = small_y
small_single_shape = (self.small_x, self.small_y,

self.num_channels)↪→

if reset_only:
self.real_modifier = np.zeros((1,) + small_single_shape,

dtype=np.float32)↪→

else:
# run the resize_op once to get the scaled image
prev_modifier = np.copy(self.real_modifier)
self.real_modifier = self.sess.run(self.resize_op,

feed_dict={self.resize_size_x: self.small_x,
self.resize_size_y: self.small_y, self.resize_input:
self.real_modifier})

↪→

↪→

↪→

# prepare the list of all valid variables
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var_size = self.small_x * self.small_y * self.num_channels
self.use_var_len = var_size
self.var_list = np.array(range(0, self.use_var_len), dtype =

np.int32)↪→

# ADAM status
self.mt = np.zeros(var_size, dtype = np.float32)
self.vt = np.zeros(var_size, dtype = np.float32)
self.adam_epoch = np.ones(var_size, dtype = np.int32)
# update sample probability
if reset_only:

self.sample_prob = np.ones(var_size, dtype = np.float32) /
var_size↪→

else:
self.sample_prob = self.get_new_prob(prev_modifier, True)
self.sample_prob = self.sample_prob.reshape(var_size)

def fake_blackbox_optimizer(self):
true_grads, losses, l2s, loss1, loss2, scores, nimgs =

self.sess.run([self.grad_op, self.loss, self.l2dist,
self.loss1, self.loss2, self.output, self.newimg],
feed_dict={self.modifier: self.real_modifier})

↪→

↪→

↪→

# ADAM update
grad = true_grads[0].reshape(-1)
# print(true_grads[0])
epoch = self.adam_epoch[0]
mt = self.beta1 * self.mt + (1 - self.beta1) * grad
vt = self.beta2 * self.vt + (1 - self.beta2) * np.square(grad)
corr = (math.sqrt(1 - self.beta2 ** epoch)) / (1 - self.beta1

** epoch)↪→

# print(grad.shape, mt.shape, vt.shape,
self.real_modifier.shape)↪→

# m is a *view* of self.real_modifier
m = self.real_modifier.reshape(-1)
# this is in-place
m -= self.LEARNING_RATE * corr * (mt / (np.sqrt(vt) + 1e-8))
self.mt = mt
self.vt = vt
# m -= self.LEARNING_RATE * grad
if not self.use_tanh:
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m_proj = np.maximum(np.minimum(m, self.modifier_up),
self.modifier_down)↪→

np.copyto(m, m_proj)
self.adam_epoch[0] = epoch + 1
return losses[0], l2s[0], loss1[0], loss2[0], scores[0],

nimgs[0]↪→

def blackbox_optimizer(self, iteration):
# build new inputs, based on current variable value
var = np.repeat(self.real_modifier, self.batch_size * 2 + 1,

axis=0)↪→

var_size = self.real_modifier.size
# print(s, "variables remaining")
# var_indice = np.random.randint(0, self.var_list.size,

size=self.batch_size)↪→

if self.use_importance:
var_indice = np.random.choice(self.var_list.size,

self.batch_size, replace=False, p = self.sample_prob)↪→

else:
var_indice = np.random.choice(self.var_list.size,

self.batch_size, replace=False)↪→

indice = self.var_list[var_indice]
# indice = self.var_list
# regenerate the permutations if we run out
# if self.perm_index + self.batch_size >= var_size:
# self.perm = np.random.permutation(var_size)
# self.perm_index = 0
# indice = self.perm[self.perm_index:self.perm_index +

self.batch_size]↪→

# b[0] has the original modifier, b[1] has one index added
0.0001↪→

for i in range(self.batch_size):
var[i * 2 + 1].reshape(-1)[indice[i]] += 0.0001
var[i * 2 + 2].reshape(-1)[indice[i]] -= 0.0001

losses, l2s, loss1, loss2, scores, nimgs =
self.sess.run([self.loss, self.l2dist, self.loss1,
self.loss2, self.output, self.newimg],
feed_dict={self.modifier: var})

↪→

↪→

↪→
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# losses = self.sess.run(self.loss, feed_dict={self.modifier:
var})↪→

# t_grad = self.sess.run(self.grad_op,
feed_dict={self.modifier: self.real_modifier})↪→

# self.grad = t_grad[0].reshape(-1)
# true_grads = self.sess.run(self.grad_op,

feed_dict={self.modifier: self.real_modifier})↪→

# self.coordinate_ADAM_numba(losses, indice, self.grad,
self.hess, self.batch_size, self.mt, self.vt,
self.real_modifier, self.modifier_up,
self.modifier_down, self.LEARNING_RATE, self.adam_epoch,
self.beta1, self.beta2, not self.use_tanh)

↪→

↪→

↪→

↪→

# coordinate_ADAM(losses, indice, self.grad, self.hess,
self.batch_size, self.mt, self.vt, self.real_modifier,
self.modifier_up, self.modifier_down,
self.LEARNING_RATE, self.adam_epoch, self.beta1,
self.beta2, not self.use_tanh)

↪→

↪→

↪→

↪→

# coordinate_ADAM(losses, indice, self.grad, self.hess,
self.batch_size, self.mt, self.vt, self.real_modifier,
self.modifier_up, self.modifier_down,
self.LEARNING_RATE, self.adam_epoch, self.beta1,
self.beta2, not self.use_tanh, true_grads)

↪→

↪→

↪→

↪→

# coordinate_Newton(losses, indice, self.grad, self.hess,
self.batch_size, self.mt, self.vt, self.real_modifier,
self.modifier_up, self.modifier_down,
self.LEARNING_RATE, self.adam_epoch, self.beta1,
self.beta2, not self.use_tanh)

↪→

↪→

↪→

↪→

# coordinate_Newton_ADAM(losses, indice, self.grad,
self.hess, self.batch_size, self.mt, self.vt,
self.real_modifier, self.modifier_up,
self.modifier_down, self.LEARNING_RATE, self.adam_epoch,
self.beta1, self.beta2, not self.use_tanh)

↪→

↪→

↪→

↪→

self.solver(losses, indice, self.grad, self.hess,
self.batch_size, self.mt, self.vt, self.real_modifier,
self.modifier_up, self.modifier_down, self.LEARNING_RATE,
self.adam_epoch, self.beta1, self.beta2, not
self.use_tanh)

↪→

↪→

↪→

↪→

# adjust sample probability, sample around the points with
large gradient↪→

if self.save_ckpts:
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np.save('{}/iter{}'.format(self.save_ckpts, iteration),
self.real_modifier)↪→

if self.real_modifier.shape[0] > self.resize_init_size:
self.sample_prob = self.get_new_prob(self.real_modifier)
# self.sample_prob = self.get_new_prob(tmp_mt.reshape(se ⌋

lf.real_modifier.shape))↪→

self.sample_prob = self.sample_prob.reshape(var_size)

# if the gradient is too small, do not optimize on this
variable↪→

# self.var_list = np.delete(self.var_list,
indice[np.abs(self.grad) < 5e-3])↪→

# reset the list every 10000 iterations
# if iteration%200 == 0:
# print("{} variables remained at last

stage".format(self.var_list.size))↪→

# var_size = self.real_modifier.size
# self.var_list = np.array(range(0, var_size))
return losses[0], l2s[0], loss1[0], loss2[0], scores[0],

nimgs[0]↪→

# return losses[0]

def attack(self, imgs, targets):
"""
Perform the L_2 attack on the given images for the given

targets.↪→

If self.targeted is true, then the targets represents the
target labels.↪→

If self.targeted is false, then targets are the original
class labels.↪→

"""
r = []
print('go up to',len(imgs))
# we can only run 1 image at a time, minibatches are used for

gradient evaluation↪→

for i in range(0,len(imgs)):
print('tick',i)
r.extend(self.attack_batch(imgs[i], targets[i]))
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return np.array(r)

# only accepts 1 image at a time. Batch is used for gradient
evaluations at different points↪→

def attack_batch(self, img, lab):
"""
Run the attack on a batch of images and labels.
"""
def compare(x,y):

if not isinstance(x, (float, int, np.int64)):
x = np.copy(x)
if self.TARGETED:

x[y] -= self.CONFIDENCE
else:

x[y] += self.CONFIDENCE
x = np.argmax(x)

if self.TARGETED:
return x == y

else:
return x != y

# remove the extra batch dimension
if len(img.shape) == 4:

img = img[0]
if len(lab.shape) == 2:

lab = lab[0]
# convert to tanh-space
if self.use_tanh:

img = np.arctanh(img*1.999999)

# set the lower and upper bounds accordingly
lower_bound = 0.0
CONST = self.initial_const
upper_bound = 1e10

# convert img to float32 to avoid numba error
img = img.astype(np.float32)

# set the upper and lower bounds for the modifier
if not self.use_tanh:
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self.modifier_up = 0.5 - img.reshape(-1)
self.modifier_down = -0.5 - img.reshape(-1)

# clear the modifier
if not self.load_checkpoint:

if self.use_resize:
self.resize_img(self.resize_init_size,

self.resize_init_size, True)↪→

else:
self.real_modifier.fill(0.0)

# the best l2, score, and image attack
o_best_const = CONST
o_bestl2 = 1e10
o_bestscore = -1
o_bestattack = img

for outer_step in range(self.BINARY_SEARCH_STEPS):
print(o_bestl2)

bestl2 = 1e10
bestscore = -1

# The last iteration (if we run many steps) repeat the
search once.↪→

if self.repeat == True and outer_step ==
self.BINARY_SEARCH_STEPS-1:↪→

CONST = upper_bound

# set the variables so that we don't have to send them
over again↪→

self.sess.run(self.setup, {self.assign_timg: img,
self.assign_tlab: lab,
self.assign_const: CONST})

# use the current best model
# np.copyto(self.real_modifier, o_bestattack - img)
# use the model left by last constant change

prev = 1e6
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train_timer = 0.0
last_loss1 = 1.0
if not self.load_checkpoint:

if self.use_resize:
self.resize_img(self.resize_init_size,

self.resize_init_size, True)↪→

else:
self.real_modifier.fill(0.0)

# reset ADAM status
self.mt.fill(0.0)
self.vt.fill(0.0)
self.adam_epoch.fill(1)
self.stage = 0
multiplier = 1
eval_costs = 0
if self.solver_name != "fake_zero":

multiplier = 24
for iteration in range(self.start_iter,

self.MAX_ITERATIONS):↪→

if self.use_resize:
if iteration == 2000:
# if iteration == 2000 // 24:

self.resize_img(64,64)
if iteration == 10000:

# if iteration == 2000 // 24 + (10000 - 2000) // 96:
self.resize_img(128,128)

# if iteration == 200*30:
# if iteration == 250 * multiplier:
# self.resize_img(256,256)

# print out the losses every 10%
if iteration%(self.print_every) == 0:

# print(iteration,self.sess.run((self.loss,self.r ⌋

eal,self.other,self.loss1,self.loss2),
feed_dict={self.modifier:
self.real_modifier}))

↪→

↪→

↪→

loss, real, other, loss1, loss2 =
self.sess.run((self.loss,self.real,self.other ⌋

,self.loss1,self.loss2),
feed_dict={self.modifier: self.real_modifier})

↪→

↪→

↪→
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print("[STATS][L2] iter = {}, cost = {}, time =
{:.3f}, size = {}, loss = {:.5g}, real =
{:.5g}, other = {:.5g}, loss1 = {:.5g}, loss2
= {:.5g}".format(iteration, eval_costs,
train_timer, self.real_modifier.shape,
loss[0], real[0], other[0], loss1[0],
loss2[0]))

↪→

↪→

↪→

↪→

↪→

↪→

sys.stdout.flush()
# np.save('black_iter_{}'.format(iteration),

self.real_modifier)↪→

attack_begin_time = time.time()
# perform the attack
if self.solver_name == "fake_zero":

l, l2, loss1, loss2, score, nimg =
self.fake_blackbox_optimizer()↪→

else:
l, l2, loss1, loss2, score, nimg =

self.blackbox_optimizer(iteration)↪→

# l = self.blackbox_optimizer(iteration)

if self.solver_name == "fake_zero":
eval_costs += np.prod(self.real_modifier.shape)

else:
eval_costs += self.batch_size

# reset ADAM states when a valid example has been found
if loss1 == 0.0 and last_loss1 != 0.0 and self.stage ==

0:↪→

# we have reached the fine tunning point
# reset ADAM to avoid overshoot
if self.reset_adam_after_found:

self.mt.fill(0.0)
self.vt.fill(0.0)
self.adam_epoch.fill(1)

self.stage = 1
last_loss1 = loss1

# check if we should abort search if we're getting
nowhere.↪→
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# if self.ABORT_EARLY and
iteration%(self.MAX_ITERATIONS//10) == 0:↪→

if self.ABORT_EARLY and iteration %
self.early_stop_iters == 0:↪→

if l > prev*.9999:
print("Early stopping because there is no

improvement")↪→

break
prev = l

# adjust the best result found so far
# the best attack should have the target class with

the largest value,↪→

# and has smallest l2 distance
if l2 < bestl2 and compare(score, np.argmax(lab)):

bestl2 = l2
bestscore = np.argmax(score)

if l2 < o_bestl2 and compare(score, np.argmax(lab)):
# print a message if it is the first attack found
if o_bestl2 == 1e10:

print("[STATS][L3](First valid attack found!)
iter = {}, cost = {}, time = {:.3f}, size
= {}, loss = {:.5g}, loss1 = {:.5g}, loss2
= {:.5g}, l2 = {:.5g}".format(iteration,
eval_costs, train_timer,
self.real_modifier.shape, l, loss1, loss2,
l2))

↪→

↪→

↪→

↪→

↪→

↪→

sys.stdout.flush()
o_bestl2 = l2
o_bestscore = np.argmax(score)
o_bestattack = nimg
o_best_const = CONST

train_timer += time.time() - attack_begin_time

# adjust the constant as needed
if compare(bestscore, np.argmax(lab)) and bestscore != -1:

# success, divide const by two
print('old constant: ', CONST)
upper_bound = min(upper_bound,CONST)
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if upper_bound < 1e9:
CONST = (lower_bound + upper_bound)/2

print('new constant: ', CONST)
else:

# failure, either multiply by 10 if no solution found
yet↪→

# or do binary search with the known upper bound
print('old constant: ', CONST)
lower_bound = max(lower_bound,CONST)
if upper_bound < 1e9:

CONST = (lower_bound + upper_bound)/2
else:

CONST *= 10
print('new constant: ', CONST)

# return the best solution found
return o_bestattack, o_best_const
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A.2 EAD Attack (EN)

## en_attack.py -- attack a network optimizing elastic-net distance
with an en decision rule↪→

##
import sys
import tensorflow as tf
import numpy as np

BINARY_SEARCH_STEPS = 9 # number of times to adjust the constant
with binary search↪→

MAX_ITERATIONS = 10000 # number of iterations to perform gradient
descent↪→

ABORT_EARLY = True # if we stop improving, abort gradient
descent early↪→

LEARNING_RATE = 1e-2 # larger values converge faster to less
accurate results↪→

TARGETED = True # should we target one specific class? or
just be wrong?↪→

CONFIDENCE = 0 # how strong the adversarial example should be
INITIAL_CONST = 1e-3 # the initial constant c to pick as a first

guess↪→

BETA = 1e-3 # Hyperparameter trading off L2 minimization
for L1 minimization↪→

class EADEN:
def __init__(self, sess, model, batch_size=1, confidence =

CONFIDENCE,↪→

targeted = TARGETED, learning_rate = LEARNING_RATE,
binary_search_steps = BINARY_SEARCH_STEPS,

max_iterations = MAX_ITERATIONS,↪→

abort_early = ABORT_EARLY,
initial_const = INITIAL_CONST, beta = BETA):

"""
EAD with EN Decision Rule

Returns adversarial examples for the supplied model.
"""
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image_size, num_channels, num_labels = model.image_size,
model.num_channels, model.num_labels↪→

self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.BINARY_SEARCH_STEPS = binary_search_steps
self.ABORT_EARLY = abort_early
self.CONFIDENCE = confidence
self.initial_const = initial_const
self.batch_size = batch_size
self.beta = beta
self.beta_t = tf.cast(self.beta, tf.float32)

self.repeat = binary_search_steps >= 10

shape = (batch_size,image_size,image_size,num_channels)

# these are variables to be more efficient in sending data to
tf↪→

self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.newimg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.slack = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.tlab = tf.Variable(np.zeros((batch_size,num_labels)),

dtype=tf.float32)↪→

self.const = tf.Variable(np.zeros(batch_size),
dtype=tf.float32)↪→

# and here's what we use to assign them
self.assign_timg = tf.placeholder(tf.float32, shape)
self.assign_newimg = tf.placeholder(tf.float32, shape)
self.assign_slack = tf.placeholder(tf.float32, shape)
self.assign_tlab = tf.placeholder(tf.float32,

(batch_size,num_labels))↪→

self.assign_const = tf.placeholder(tf.float32, [batch_size])

self.global_step = tf.Variable(0, trainable=False)
self.global_step_t = tf.cast(self.global_step, tf.float32)

"""Fast Iterative Soft Thresholding"""
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"""--------------------------------"""
self.zt = tf.divide(self.global_step_t,

self.global_step_t+tf.cast(3, tf.float32))↪→

cond1 = tf.cast(tf.greater(tf.subtract(self.slack,
self.timg),self.beta_t), tf.float32)↪→

cond2 = tf.cast(tf.less_equal(tf.abs(tf.subtract(self.slack,s ⌋

elf.timg)),self.beta_t),
tf.float32)

↪→

↪→

cond3 = tf.cast(tf.less(tf.subtract(self.slack,
self.timg),tf.negative(self.beta_t)), tf.float32)↪→

upper = tf.minimum(tf.subtract(self.slack,self.beta_t),
tf.cast(0.5, tf.float32))↪→

lower = tf.maximum(tf.add(self.slack,self.beta_t),
tf.cast(-0.5, tf.float32))↪→

self.assign_newimg = tf.multiply(cond1,upper)+tf.multiply(con ⌋

d2,self.timg)+tf.multiply(cond3,lower)↪→

self.assign_slack = self.assign_newimg+tf.multiply(self.zt,
self.assign_newimg-self.newimg)↪→

self.setter = tf.assign(self.newimg, self.assign_newimg)
self.setter_y = tf.assign(self.slack, self.assign_slack)
"""--------------------------------"""
# prediction BEFORE-SOFTMAX of the model
self.output = model.predict(self.newimg)
self.output_y = model.predict(self.slack)

# distance to the input data
self.l2dist =

tf.reduce_sum(tf.square(self.newimg-self.timg),[1,2,3])↪→

self.l2dist_y =
tf.reduce_sum(tf.square(self.slack-self.timg),[1,2,3])↪→

self.l1dist =
tf.reduce_sum(tf.abs(self.newimg-self.timg),[1,2,3])↪→

self.l1dist_y =
tf.reduce_sum(tf.abs(self.slack-self.timg),[1,2,3])↪→

self.elasticdist = self.l2dist + tf.multiply(self.l1dist,
self.beta_t)↪→
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self.elasticdist_y = self.l2dist_y +
tf.multiply(self.l1dist_y, self.beta_t)↪→

# compute the probability of the label class versus the
maximum other↪→

real = tf.reduce_sum((self.tlab)*self.output,1)
real_y = tf.reduce_sum((self.tlab)*self.output_y,1)
other = tf.reduce_max((1-self.tlab)*self.output -

(self.tlab*10000),1)↪→

other_y = tf.reduce_max((1-self.tlab)*self.output_y -
(self.tlab*10000),1)↪→

if self.TARGETED:
# if targeted, optimize for making the other class most

likely↪→

loss1 = tf.maximum(0.0, other-real+self.CONFIDENCE)
loss1_y = tf.maximum(0.0, other_y-real_y+self.CONFIDENCE)

else:
# if untargeted, optimize for making this class least

likely.↪→

loss1 = tf.maximum(0.0, real-other+self.CONFIDENCE)
loss1_y = tf.maximum(0.0, real_y-other_y+self.CONFIDENCE)

# sum up the losses
self.loss21 = tf.reduce_sum(self.l1dist)
self.loss21_y = tf.reduce_sum(self.l1dist_y)
self.loss2 = tf.reduce_sum(self.l2dist)
self.loss2_y = tf.reduce_sum(self.l2dist_y)
self.loss1 = tf.reduce_sum(self.const*loss1)
self.loss1_y = tf.reduce_sum(self.const*loss1_y)

self.loss_opt = self.loss1_y+self.loss2_y
self.loss =

self.loss1+self.loss2+tf.multiply(self.beta_t,self.loss21)↪→

self.learning_rate =
tf.train.polynomial_decay(self.LEARNING_RATE,
self.global_step, self.MAX_ITERATIONS, 0, power=0.5)

↪→

↪→

start_vars = set(x.name for x in tf.global_variables())
optimizer =

tf.train.GradientDescentOptimizer(self.learning_rate)↪→
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self.train = optimizer.minimize(self.loss_opt,
var_list=[self.slack], global_step=self.global_step)↪→

end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]

# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))

self.init = tf.variables_initializer(var_list=[self.global_st ⌋

ep]+[self.slack]+[self.newimg]+new_vars)↪→

def attack(self, imgs, targets):
"""
Perform the EAD attack on the given images for the given

targets.↪→

If self.targeted is true, then the targets represents the
target labels.↪→

If self.targeted is false, then targets are the original
class labels.↪→

"""
r = []
print('go up to',len(imgs))
for i in range(0,len(imgs),self.batch_size):

print('tick',i)
r.extend(self.attack_batch(imgs[i:i+self.batch_size],

targets[i:i+self.batch_size]))↪→

return np.array(r)

def attack_batch(self, imgs, labs):
"""
Run the attack on a batch of images and labels.
"""
def compare(x,y):

if not isinstance(x, (float, int, np.int64)):
x = np.copy(x)
if self.TARGETED:
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x[y] -= self.CONFIDENCE
else:

x[y] += self.CONFIDENCE
x = np.argmax(x)

if self.TARGETED:
return x == y

else:
return x != y

batch_size = self.batch_size

# set the lower and upper bounds accordingly
lower_bound = np.zeros(batch_size)
CONST = np.ones(batch_size)*self.initial_const
upper_bound = np.ones(batch_size)*1e10

# the best l2, score, and image attack
o_besten = [1e10]*batch_size
o_bestscore = [-1]*batch_size
o_bestattack = [np.zeros(imgs[0].shape)]*batch_size

for outer_step in range(self.BINARY_SEARCH_STEPS):
# completely reset adam's internal state.
self.sess.run(self.init)
batch = imgs[:batch_size]
batchlab = labs[:batch_size]

besten = [1e10]*batch_size
bestscore = [-1]*batch_size

# The last iteration (if we run many steps) repeat the
search once.↪→

if self.repeat == True and outer_step ==
self.BINARY_SEARCH_STEPS-1:↪→

CONST = upper_bound

# set the variables so that we don't have to send them
over again↪→

self.sess.run(self.setup, {self.assign_timg: batch,
self.assign_tlab: batchlab,
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self.assign_const: CONST})
self.sess.run(self.setter, feed_dict={self.assign_newimg:

batch})↪→

self.sess.run(self.setter_y, feed_dict={self.assign_slack:
batch})↪→

prev = 1e6
for iteration in range(self.MAX_ITERATIONS):

# perform the attack
self.sess.run([self.train])
self.sess.run([self.setter, self.setter_y])
l, l2s, l1s, elastic, scores, nimg =

self.sess.run([self.loss, self.l2dist,
self.l1dist, self.elasticdist, self.output,
self.newimg])

↪→

↪→

↪→

# print out the losses every 10%
"""
if iteration%(self.MAX_ITERATIONS//10) == 0:

print(iteration,self.sess.run((self.loss,self.lo ⌋

ss1,self.loss2,self.loss21)))↪→

"""
# check if we should abort search if we're getting

nowhere.↪→

if self.ABORT_EARLY and
iteration%(self.MAX_ITERATIONS//10) == 0:↪→

if l > prev*.9999:
break

prev = l

# adjust the best result found so far
for e,(en,sc,ii) in enumerate(zip(elastic,scores,nimg)):

if en < besten[e] and compare(sc,
np.argmax(batchlab[e])):↪→

besten[e] = en
bestscore[e] = np.argmax(sc)

if en < o_besten[e] and compare(sc,
np.argmax(batchlab[e])):↪→

o_besten[e] = en
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o_bestscore[e] = np.argmax(sc)
o_bestattack[e] = ii

# adjust the constant as needed
for e in range(batch_size):

if compare(bestscore[e], np.argmax(batchlab[e])) and
bestscore[e] != -1:↪→

# success, divide const by two
upper_bound[e] = min(upper_bound[e],CONST[e])
if upper_bound[e] < 1e9:

CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:

# failure, either multiply by 10 if no solution
found yet↪→

# or do binary search with the known upper
bound↪→

lower_bound[e] = max(lower_bound[e],CONST[e])
if upper_bound[e] < 1e9:

CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:

CONST[e] *= 10

# return the best solution found
o_besten = np.array(o_besten)
return o_bestattack

128


