Gradient-based Adversarial Attacks to Deep Neural Networks in Limited Access Settings

Yash Sharma Advisor: Sam Keene

April 15, 2019

Overview

- Extend white-box attacks to limited access settings.
 → ZOO: Uses the finite difference method to estimate the gradients for optimization from the output scores. (black-box)
 - \rightarrow EAD: Incorporates L_1 minimization to encourage sparsity in the perturbation, hence generating more transferable adversarial examples. (no-box)
- Demonstrate that these attacks can succeed against recently proposed state-of-the-art defenses.

Background

Thesis 2018

Adversarial Examples

Goodfellow et. al., ICLR 2015

+ .007 \times

 \boldsymbol{x}

"panda" 57.7% confidence

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

x + $\epsilon sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

Attack Settings

Backpropagation computes the gradient of the error function with respect to the neural network weights

Optimization-based Attack

Input image: $\mathbf{x}_0 \in \mathbb{R}^p$, adversarial image: $\mathbf{x} \in \mathbb{R}^p$, target class label: *t*. Define an optimization problem:

minimize_x
$$\|\mathbf{x} - \mathbf{x}_0\|_2^2 + c \cdot f(\mathbf{x}, t)$$
 (1)
subject to $\mathbf{x} \in [0, 1]^p$,

- $\|\mathbf{x} \mathbf{x}_0\|_2^2$ measures the L_2 distortion
- $f(\mathbf{x}, t)$ is some loss to measure how successful the attack is (smaller is better). How to design it?
- *c* is a cost constant to trade-off between the two

Carlini & Wagner's (C&W, 2017) Attack

Carlini & Wagner propose to use the following loss:

$$f(\mathbf{x},t) = \max\{\max_{i \neq t} [Z(\mathbf{x})]_i - [Z(\mathbf{x})]_t, 0\},$$
 (2)

 $Z(\mathbf{x}) \in \mathbb{R}^{K}$ is the logit layer outputs (unnormalized probabilities), and the prediction probabilities $F(\mathbf{x})$ are: $[F(\mathbf{x})]_{k} = \frac{\exp([Z(\mathbf{x})]_{k})}{\frac{1}{2}K}, \forall k \in \{1, \dots, K\}.$ (3)

$$T(\mathbf{x})_{k} = \frac{1}{\sum_{i=1}^{K} \exp([Z(\mathbf{x})]_{i})}, \quad \forall \ k \in \{1, \dots, K\}.$$

- Strongest Attack
- Only works in the white-box case

Black Box: ZOO

Joint work with Pin-Yu Chen (IBM Research), Huan Zhang (UC Davis), Jinfeng Yi (IBM Research), and Cho-Jui Hsieh (UC Davis)

Black Box Attack

Black-box: No access to model parameters; Can observe model output (prediction probabilities)

Previous Approach

- Transferability based attack using learned substitute model (Papernot et al, 2017)
 - \Rightarrow Success rate lower than C&W (model mismatch)
 - \Rightarrow Computational cost (substitute model training)

Thesis 2018

Our Black-box Attack Formulation

Input image: x_0 , adversarial image: x, target class label: *t*. Define the following optimization problem:

minimize_x
$$\|\mathbf{x} - \mathbf{x}_0\|_2^2 + c \cdot f(\mathbf{x}, t)$$
 (4)
subject to $\mathbf{x} \in [0, 1]^p$,

We propose to use the following loss function:

$$f(\mathbf{x},t) = \max\{\max_{i \neq t} \log[F(\mathbf{x})]_i - \log[F(\mathbf{x})]_t, 0\}, \quad (5)$$

where $F(\mathbf{x}) \in \mathbb{R}^{K}$ is the blackbox output (probabilities)

Thesis 2018

Zeroth Order Optimization (ZOO)

Access to $f(\mathbf{x})$ only, no $\nabla f(\mathbf{x})$ available. Estimate gradient \hat{g}_i for *each pixel* using the symmetric difference quotient:

$$\hat{g}_i \coloneqq \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i)}{2h},$$
 (6)

Then we update each pixel (coordinate) based on its estimated gradient (we use ADAM optimizer).

Challenges of ZOO

Number of Queries = $O(2 \cdot \text{number of pixels})$ For an ImageNet image with resolution $299 \times 299 \times 3$, we need

536, 406 queries to estimate the gradients of all pixels once.

How to reduce the number of queries?

Black-box attack by Coordinate Descent

 $\mathbf{x} \in \mathbb{R}^p$ is the input image with p pixels, f is the loss function we defined to find adversarial examples

Algorithm 1 Stochastic Coordinate Descent

- 1: while not converged do
- 2: Randomly pick a coordinate $i \in \{1, \dots, p\}$
- 3: Compute an update δ^* by approximately minimizing

$$\arg\min_{\delta} f(\mathbf{x} + \delta \mathbf{e}_i)$$

- 4: Update $\mathbf{x}_i \leftarrow \mathbf{x}_i + \delta^*$
- 5: end while

In practice we optimize a batch of B = 128 coordinates for better efficiency

Thesis 2018

ZOO-ADAM

Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordinate Descent with Coordinate-wise ADAM

Require: Step size η , ADAM states $M \in \mathbb{R}^p, v \in \mathbb{R}^p, T \in \mathbb{Z}^p$, ADAM hyper-parameters $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$

1:
$$M \leftarrow \mathbf{0}, v \leftarrow \mathbf{0}, T \leftarrow \mathbf{0}$$

- 2: while not converged do
- 3: Randomly pick a coordinate $i \in \{1, \cdots, p\}$
- 4: Estimate \hat{g}_i using (6)

5:
$$T_i \leftarrow T_i + 1$$

6: $M_i \leftarrow \beta_1 M_i + (1 - \beta_1) \hat{g}_i, \quad v_i \leftarrow \beta_2 v_i + (1 - \beta_2) \hat{g}_i^2$

7:
$$M_i = M_i / (1 - \beta_1^{-i}), \quad \dot{v}_i = v_i / (1 - \beta_2^{-i})$$

8:
$$\delta^* = -\eta \frac{M_i}{\sqrt{\hat{v}_i} + \epsilon}$$

- 9: Update $\mathbf{x}_i \leftarrow \mathbf{x}_i + \delta^*$
- 10: end while

Attack-space Dimension Reduction

- *Attack-space* is the image space that we search for adversarial noise.
- Instead of searching in the original image's space, we can search in a smaller space (with less pixels) using dimension reduction techniques.
- This greatly reduces the number of pixels to optimize and make the attack practical for large images.

Attack-space Dimension Reduction

For images, size scaling is easy and fast. We craft noise at small size and then upscale it to the input image size. Input image is untouched.

But what if 32×32 is not big enough?

Hierarchical Attack (on bagel)

Gradually increase the dimension of attack space after some iterations.

 $32 \times 32 \rightarrow 64 \times 64 \rightarrow 128 \times 128$

bagel Hierarchical attack Most changed pixels are around the center of bagel?

Thesis 2018

Importance Sampling (on bagel)

Importance determined by the magnitude of changes in a certain region (we use maxpooling).

18/50

Thesis 2018

Targeted Attack on MNIST

0	
J	
2	
3	
4	
5	
6	
7	
С	
9	

)	0	0	0	0	G	0	0	0		0	0	0	0	0	0	6	0	0	0
		-	1	T.		1	1	1		30	J	11	t in	15	-	1	11	44	
Ł	2	2	2	2	2	X	2	2		2	2	λ	2	2	2	2	2	2	2
È	3:	3	み	3	ろ	3	3	3		8	3	3	3	3	3	3	3	3	3
	7	4	4	4	4	4	A	4		导	4	H	4	4	4	4	4	A	4
S	5	5	5	5	5	50	8	B		5	5	5	5	5	5	5	5	Б	53
ž	в	8	6	6	6	÷¢	в	9		6	6	6	3	6	6	6	£	6	6
	7	7	7	7	4	7	7	7		7	57	7	7	7	7	1	7	7	7
5	З	8	8	8	8	З	С	8		C	С	С	8	8	8	C	Е	С	8
Ē	q	9	9	9	9	9	9	9		q	9	q	9	9	q	4	9	q	9
White-box C&W Blac											ac	k-l	200	χZ	ZO	0-	A	DA	M

Figure: Row: crafted adversarial examples from original examples in (a). Column: targeted attack class ('0' to '9').

Thesis 2018

Targeted Attack on CIFAR-10

White-box C&W

Black-box ZOO-ADAM

Figure: Row: crafted adversarial examples from original examples in (a). Column: targeted attack class.

Attack on MNIST & CIFAR-10

Success rate close to white-box (C & W) attack - nearly 100%. Similar L_2 distortion and reasonable attack time.

			MN	IIST					
		Untarge	eted	Targeted					
	Success Rate	Avg. L_2	Avg. Time (per attack)	Success Rate	Avg. L_2	Avg. Time (per attack)			
White-box (C&W)	100 %	1.48066	0.48 min	100 %	2.00661	0.53 min			
Substitute Model + FGSM	40.6 %	-	0.002 sec (+ 6.16 min)	7.48 %	-	0.002 sec (+ 6.16 min)			
Substitute Model + C&W	33.3 %	3.6111	0.76 min (+ 6.16 min)	26.74 %	5.272	0.80 min (+ 6.16 min)			
ZOO-ADAM	100 %	1.49550	1.38 min	98.9 %	1.987068	1.62 min			
			CIFA	R-10					
		Untarge	eted	Targeted					
	Success Rate	Avg. L_2	Avg. Time (per attack)	Success Rate	Avg. L_2	Avg. Time (per attack)			
White-box (C&W)	100 %	0.17980	0.20 min	100 %	0.37974	0.16 min			
Substitute Model + FGSM	76.1 %	-	0.005 sec (+ 7.81 min)	11.48 %	-	0.005 sec (+ 7.81 min)			
Substitute Model + C&W	25.3 %	2.9708	0.47 min (+ 7.81 min)	5.3 %	5.7439	0.49 min (+ 7.81 min)			
ZOO-ADAM	100 %	0.19973	3.43 min	96.8 %	0.39879	3.95 min			

Untargeted Attack on Inception-v3

- black-box attacks to 150 ImageNet test images (size 299 × 299 × 3)
- 2,000 iterations (within 20 minutes) for each attack
- reduced attack-space: $32 \times 32 \times 3$
- No hierarchical attack or importance sampling

	Success Rate	Avg. L_2
White-box (C&W)	100 %	0.37310
Black-box (ZOO-ADAM)	88.9 %	1.19916

Thesis 2018

Untargeted Attack on Inception-v3

Figure: ImageNet untargeted attack examples

Targeted Attack on Inception-v3

Targeted attack is much harder than untargeted attack, because we want to force the image to be misclassified to specifically one class out of 1,000.

Before Attack: P(bagel) = 0.97, P(piano) = 0.000006After Attack: P(bagel) = 0.006, P(piano) = 0.0061 L_2 distortion: 3.425

Thesis 2018

Targeted Attack on Inception-v3

Needs 20,000 iterations to perform this *hard* targeted attack (about 4 hours). Attack-space dimension reduction, hierarchical attack and importance sampling techniques applied.

Thesis 2018

Targeted Attack on Inception-v3

Figure: Left: the total loss $\|\mathbf{x} - \mathbf{x}_0\|_2^2 + c \cdot f(\mathbf{x}, t)$ versus iterations. Right: $c \cdot f(\mathbf{x}, t)$ versus iterations in log scale. When $c \cdot f(\mathbf{x}, t)$ reaches 0, a valid attack is found.

Targeted Attack on Inception-v3

40 images from ImageNet test set, random target:

- 30.0% success within 2,000 iterations
- 72.5% success within 5,000 iterations
- 82.5% success rate within 10,000 iterations
- 95.0% success rate within 20,000 iterations
- Average *L*₂ distortion: 2.108

Conclusions

- 2eroth Order Optimization (ZOO) based black-box attacks to deep neural networks can be applied to large images by using the proposed attack-space dimension reduction, hierarchical attack and importance sampling techniques.
- ZOO can achieve a success rate similar to white-box attacks, without relying on transferability or training an extra substitute model.

No Box: EAD

Joint work with Pin-Yu Chen (IBM Research), Huan Zhang (UC Davis), Jinfeng Yi (IBM Research), and Cho-Jui Hsieh (UC Davis)

Thesis 2018

Carlini & Wagner's (C&W, 2017) Attack

Targeted attack formulation:

minimize_x
$$\|\mathbf{x} - \mathbf{x}_0\|_2^2 + c \cdot f(\mathbf{x}, t)$$
 (7)
subject to $\mathbf{x} \in [0, 1]^p$,

C&W loss function:

$$f(\mathbf{x},t) = \max\{\max_{i \neq t} [Z(\mathbf{x})]_i - [Z(\mathbf{x})]_t, -\kappa\}, \qquad (8)$$

Thesis 2018

Elastic-net Optimization

- Elastic-net: *min*_z f(z) + λ₁||z||₁ + λ₂||z||₂² ⇒ Group feature selection for high-dimensional machine learning problems
- C&W: $\min_{\mathbf{x}} \|\mathbf{x} \mathbf{x}_0\|_2^2 + c \cdot f(\mathbf{x}, t)$

$$\Rightarrow$$
 Elastic-net: $\lambda_1 = 0, \lambda_2 = \frac{1}{c}$

• Why L_1 ?

 \Rightarrow Convex regularizer that encourages sparsity in the perturbation

 Goal: Craft robust adversarial examples by limiting unnecessary noise in the perturbation

EAD Algorithm

Formulation:

minimize_x
$$c \cdot f(\mathbf{x}, t) + \|\mathbf{x} - \mathbf{x}_0\|_2^2 + \beta \|\mathbf{x} - \mathbf{x}_0\|_1$$
 (9)
subject to $\mathbf{x} \in [0, 1]^p$

Solution: Iterative Soft Thresholding Algorithm (ISTA)

$$[S_{\beta}(\mathbf{z})]_{i} = \begin{cases} \min\{\mathbf{z}_{i} - \beta, 1\}, & \text{if } \mathbf{z}_{i} - \mathbf{x}_{0i} > \beta; \\ \mathbf{x}_{0i}, & \text{if } |\mathbf{z}_{i} - \mathbf{x}_{0i}| \le \beta; \\ \max\{\mathbf{z}_{i} + \beta, 0\}, & \text{if } \mathbf{z}_{i} - \mathbf{x}_{0i} < -\beta, \end{cases}$$
(10)

Interpretation: General and Robust

EAD-ISTA

Algorithm 3 Elastic-Net Attacks to DNNs (EAD)

- 1: **Input:** original labeled image (\mathbf{x}_0, t_0) , target attack class t, attack transferability parameter κ , L_1 regularization parameter β , step size α_k , # of iterations I
- 2: **Output:** adversarial example \mathbf{x}
- 3: Let $g(x) = c \cdot f(x, t) + ||\mathbf{x} \mathbf{x}_0||_2^2$
- 4: Initialization: $\mathbf{x}^{(0)} = \mathbf{y}^{(0)} = \mathbf{x}_0$
- 5: **for** k = 0 to I 1 **do**
- 6: $\mathbf{x}^{(k+1)} = S_{\beta}(\mathbf{y}^{(k)} \alpha_k \nabla g(\mathbf{y}^{(k)}))$
- 7: $\mathbf{y}^{(k+1)} = \mathbf{x}^{(k+1)} + \frac{k}{k+3}(\mathbf{x}^{(k+1)} \mathbf{x}^{(k)})$
- 8: end for
- 9: Decision rule: determine \mathbf{x} from successful examples in $\{\mathbf{x}^{(k)}\}_{k=1}^{I}$ (EN rule or L_1 rule).

Thesis 2018

Adversarial Examples

Figure: MNIST, CIFAR-10, ImageNet

Performance (Targeted)

EAD attains 100% ASR and the least L_1 distorted adversarial examples.

		MN	IIST			CIFA	R10		ImageNet				
Attack method	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}	
C&W (L ₂)	100	22.46	1.972	0.514	100	13.62	0.392	0.044	100	232.2	0.705	0.03	
$FGM-L_1$	39	53.5	4.186	0.782	48.8	51.97	1.48	0.152	1	61	0.187	0.007	
$FGM-L_2$	34.6	39.15	3.284	0.747	42.8	39.5	1.157	0.136	1	2338	6.823	0.25	
$FGM-L_{\infty}$	42.5	127.2	6.09	0.296	52.3	127.81	2.373	0.047	3	3655	7.102	0.014	
$I-FGM-L_1$	100	32.94	2.606	0.591	100	17.53	0.502	0.055	77	526.4	1.609	0.054	
$I-FGM-L_2$	100	30.32	2.41	0.561	100	17.12	0.489	0.054	100	774.1	2.358	0.086	
I -FGM- L_{∞}	100	71.39	3.472	0.227	100	33.3	0.68	0.018	100	864.2	2.079	0.01	
EAD (EN rule)	100	17.4	2.001	0.594	100	8.18	0.502	0.097	100	69.47	1.563	0.238	
EAD (L_1 rule)	100	14.11	2.211	0.768	100	6.066	0.613	0.17	100	40.9	1.598	0.293	

Adversarial Training (MNIST)

Incorporating L_1 examples complements adversarial training and enhances attack difficulty in terms of distortion.

Attack	Adversarial		Avera	ge case	•
method	training	ASR	L_1	L_2	L_{∞}
	None	100	22.46	1.972	0.514
C&W	EAD	100	26.11	2.468	0.643
(L_2)	C&W	100	24.97	2.47	0.684
	EAD + C&W	100	27.32	2.513	0.653
	None	100	14.11	2.211	0.768
EAD	EAD	100	17.04	2.653	0.86
$(L_1 \text{ rule})$	C&W	100	15.49	2.628	0.892
	EAD + C&W	100	16.83	2.66	0.87

Thesis 2018

Attack Transferability (MNIST)

Transfer Attack from undefended network to defensively distilled network

Results Against Defenses

Joint work with Pin-Yu Chen (IBM Research)

Ensemble Adversarial Training (ZOO)

- Augment training data with with perturbations transferred from other models.
 - \rightarrow State-of-the-art ImageNet defense
 - \rightarrow Top-performing model in NIPS 2017 competition
- Perform non-targeted attack with ZOO on defended Inception-v3 and Inception ResNet-v2

 \rightarrow Achieve 100% success rate on 10 random samples against both models

 \rightarrow Visually imperceptible perturbations

Madry Defense Model (EAD)

- A high capacity network trained against PGD, iterative FGSM with random starts.
 - \rightarrow State-of-the-art MNIST defense
- Competition: Provided undefended models of the same architecture.
 - \rightarrow Transfer to hidden defended model
 - \rightarrow Used EAD (EN Rule) with ensemble of 3 models.

Thesis 2018

Results

EAD yields near 100% ASR in both the targeted and non-targeted cases.

			Targ	eted		Non-Targeted					
Attack Method	Confidence	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}		
PGD	None	68.5	188.3	8.947	0.6	99.9	270.5	13.27	0.8		
I-FGM	None	75.1	144.5	7.406	0.915	99.8	199.4	10.66	0.9		
	10	1.1	34.15	2.482	0.548	4.9	23.23	1.702	0.424		
CRIM	30	69.4	68.14	4.864	0.871	71.3	51.04	3.698	0.756		
Caw	50	92.9	117.45	8.041	0.987	99.1	78.65	5.598	0.937		
	70	34.8	169.7	10.88	0.994	99	119.4	8.097	0.99		
	10	27.4	25.79	3.209	0.876	39.9	19.19	2.636	0.8		
EAD	30	85.8	49.64	5.179	0.995	94.5	34.28	4.192	0.971		
EAD	50	98.5	93.46	7.711	1	99.6	57.68	5.839	0.999		
	70	67.2	148.9	10.36	1	99.8	90.84	7.719	1		

Thesis 2018

Adversarial Examples (Non-Targeted)

Performing elastic-net minimization aids in minimizing visual distortion, even when the L_{∞} distortion is large.

Figure: Visual illustration of adversarial examples crafted in the non-targeted case by EAD and PGD with similar average L_{∞} distortion (0.8).

Feature Squeezing (EAD)

- Relies on applying input transformations to reduce the degrees of freedom available to an adversary.
 → Reduce the color bit-depth of images.
 - \rightarrow Using smoothing (both local and non-local).
- Detection: the model's original and squeezed predictions are compared using the L₁ norm.
 Multiple feature squeezers are combined by

 \rightarrow Multiple feature squeezers are combined by outputting the maximum distance.

 \rightarrow Threshold chosen which is exceeded by no more than 5% of legitimate samples.

Thesis 2018

Results (MNIST)

EAD yields near 100% ASR in both the targeted and non-targeted cases.

			Non-Ta	argeted		Targeted								
							Ne	ext		LL				
Attack Method	Confidence	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}	
I-FGSM	None	100%	196.0	10.17	0.900	78%	169.8	8.225	0.881	67%	188.1	9.091	0.991	
	10	0%	21.05	1.962	0.568	0%	31.94	2.748	0.655	0%	37.78	3.207	0.732	
CRM	20	15%	27,21	2.472	0.665	10%	40.51	3.419	0.763	24%	47.86	3.977	0.820	
Caw	30	64%	34.30	3.019	0.754	67%	47.43	3.973	0.842	91%	59.56	4.811	0.888	
	40	87%	42.04	3.590	0.831	97%	61.12	4.938	0.922	100%	72.88	5.715	0.939	
	10	24%	11.44	2.286	0.879	7%	19.69	3.114	0.942	7%	23.99	3.481	0.955	
	20	80%	15.26	2.766	0.921	65%	26.80	3.752	0.964	78%	31.81	4.122	0.972	
LAD	30	95%	20.17	3.264	0.957	97%	35.50	4.449	0.983	93%	39.68	4.769	0.991	
	40	97%	26.50	3.803	0.972	100%	44.75	5.114	0.992	100%	50.21	5.532	0.997	

Results (CIFAR-10)

EAD yields near 100% ASR in both the targeted and non-targeted cases.

Non-Targeted						Targeted									
							Ne	ext		LL					
Attack Method	Confidence	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}		
I-FGSM	None	100%	81.18	1.833	0.070	100%	212.0	4.979	0.299	100%	214.9	5.042	0.300		
	10	32%	10.51	0.274	0.033	0%	14.25	0.368	0.042	0%	17.36	0.445	0.049		
CRIM	30	78%	28.80	0.712	0.073	51%	37.11	0.901	0.083	6%	41.51	1.006	0.093		
Caw	50	96%	59.32	1.416	0.130	98%	82.54	1.954	0.169	94%	90.17	2.129	0.179		
	70	100%	120.2	2.827	0.243	100%	201.2	4.713	0.375	100%	212.2	4.962	0.403		
	10	46%	6.371	0.379	0.079	10%	8.187	0.508	0.109	0%	10.17	0.597	0.121		
EAD	30	78%	18.94	0.876	0.146	51%	25.98	1.090	0.166	23%	29.58	1.209	0.175		
LAD	50	94%	42.36	1.550	0.206	96%	62.90	2.094	0.247	90%	70.23	2.296	0.275		
	70	100%	83.14	2.670	0.317	100%	157.9	4.466	0.477	100%	172.8	4.811	0.502		

Thesis 2018

Adversarial Examples (Non-Targeted)

Figure: First row: Original, Subsequent rows: $\kappa = \{10, 20, 30\}.$

Figure: First row: Original, Subsequent rows: $\kappa = \{10, 30, 50\}.$

Conclusion

Summary

- Validated effectiveness of ZOO as the state-of-the-art black-box attack.
- Validated effectiveness of EAD as the state-of-the-art no-box attack.
- Demonstrated attacks can succeed against state-of-the-art defenses.
 - \rightarrow Ensemble Adversarial Training: ZOO
 - \rightarrow Madry Defense Model: EAD
 - \rightarrow Feature Squeezing: EAD

Future Work

 Explore gradient-free optimization strategies, like Genetic Algorithms.

 \rightarrow Estimating the gradient is costly (ZOO)

- Extend black-box attack to real-world partial information settings.
 - \rightarrow Top-N classes outputted
- Extend algorithms to other domains.
 - \rightarrow Text + Speech

Thank you!