
The Cooper Union Thesis 2018

Gradient-based Adversarial Attacks
to Deep Neural Networks in Limited

Access Settings

Yash Sharma
Advisor: Sam Keene

April 15, 2019
1 / 50



The Cooper Union Thesis 2018

Overview
Extend white-box attacks to limited access settings.
→ ZOO: Uses the finite difference method to
estimate the gradients for optimization from the
output scores. (black-box)
→ EAD: Incorporates L1 minimization to encourage
sparsity in the perturbation, hence generating more
transferable adversarial examples. (no-box)
Demonstrate that these attacks can succeed
against recently proposed state-of-the-art
defenses.
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Background
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Adversarial Examples
Goodfellow et. al., ICLR 2015
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Attack Settings
Backpropagation computes the gradient of the error
function with respect to the neural network weights
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Optimization-based Attack
Input image: x0 ∈ Rp, adversarial image: x ∈ Rp, target
class label: t. Define an optimization problem:

minimizex ‖x− x0‖22 + c · f (x, t) (1)
subject to x ∈ [0, 1]p,

‖x− x0‖22 measures the L2 distortion
f (x, t) is some loss to measure how successful the
attack is (smaller is better). How to design it?
c is a cost constant to trade-off between the two
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Carlini & Wagner’s (C&W, 2017) Attack
Carlini & Wagner propose to use the following loss:

f (x, t) = max{max
i6=t

[Z(x)]i − [Z(x)]t, 0}, (2)

Z(x) ∈ RK is the logit layer outputs (unnormalized
probabilities), and the prediction probabilities F (x) are:

[F (x)]k =
exp([Z(x)]k)∑K
i=1 exp([Z(x)]i)

, ∀ k ∈ {1, . . . , K}. (3)

Strongest Attack
Only works in the white-box case
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Black Box: ZOO

Joint work with Pin-Yu Chen (IBM Research), Huan
Zhang (UC Davis), Jinfeng Yi (IBM Research), and

Cho-Jui Hsieh (UC Davis)
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Black Box Attack

Black-box: No access to model parameters;
Can observe model output (prediction probabilities)

Previous Approach

Transferability based attack using learned
substitute model (Papernot et al, 2017)
⇒ Success rate lower than C&W (model mismatch)
⇒ Computational cost (substitute model training)
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Our Black-box Attack Formulation
Input image: x0, adversarial image: x, target class
label: t. Define the following optimization problem:

minimizex ‖x− x0‖22 + c · f (x, t) (4)
subject to x ∈ [0, 1]p,

We propose to use the following loss function:

f (x, t) = max{max
i6=t

log[F (x)]i − log[F (x)]t, 0}, (5)

where F (x) ∈ RK is the blackbox output (probabilities)
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Zeroth Order Optimization (ZOO)

Access to f (x) only, no ∇f (x) available.
Estimate gradient ĝi for each pixel using the symmetric
difference quotient:

ĝi :=
∂f (x)

∂xi
≈ f (x + hei)− f (x− hei)

2h
, (6)

Then we update each pixel (coordinate) based on its
estimated gradient (we use ADAM optimizer).
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Challenges of ZOO

Number of Queries = O(2 · number of pixels)
For an ImageNet image with resolution 299× 299× 3, we need
536, 406 queries to estimate the gradients of all pixels once.

How to reduce the number of queries?
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Black-box attack by Coordinate Descent
x ∈ Rp is the input image with p pixels, f is the loss
function we defined to find adversarial examples

Algorithm 1 Stochastic Coordinate Descent

1: while not converged do
2: Randomly pick a coordinate i ∈ {1, . . . , p}
3: Compute an update δ∗ by approximately minimizing

argmin
δ

f (x + δei)

4: Update xi ← xi + δ∗

5: end while

In practice we optimize a batch of B = 128 coordinates
for better efficiency 13 / 50
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ZOO-ADAM
Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordi-
nate Descent with Coordinate-wise ADAM

Require: Step size η, ADAM states M ∈ Rp, v ∈ Rp, T ∈ Zp,
ADAM hyper-parameters β1 = 0.9, β2 = 0.999, ε = 10−8

1: M ← 0, v ← 0, T ← 0

2: while not converged do
3: Randomly pick a coordinate i ∈ {1, · · · , p}
4: Estimate ĝi using (6)
5: Ti ← Ti + 1

6: Mi ← β1Mi + (1− β1)ĝi, vi ← β2vi + (1− β2)ĝ2i
7: M̂i =Mi/(1− βTi1 ), v̂i = vi/(1− βTi2 )

8: δ∗ = −η M̂i√
v̂i + ε

9: Update xi ← xi + δ∗

10: end while
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Attack-space Dimension Reduction

Attack-space is the image space that we search for
adversarial noise.
Instead of searching in the original image’s space,
we can search in a smaller space (with less pixels)
using dimension reduction techniques.
This greatly reduces the number of pixels to
optimize and make the attack practical for large
images.
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Attack-space Dimension Reduction
For images, size scaling is easy and fast. We craft
noise at small size and then upscale it to the input
image size. Input image is untouched.

But what if 32× 32 is not big enough?
16 / 50
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Hierarchical Attack (on bagel)
Gradually increase the dimension of attack space after
some iterations.
32× 32→ 64× 64→ 128× 128

bagel
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Importance Sampling (on bagel)
Importance determined by the magnitude of changes in
a certain region (we use maxpooling).

0 5 10 15 20 25 30

x pixel coordinate

0

5

10

15

20

25

30

y 
pi

xe
l c

oo
rd

in
at

e

Channel R difference

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30

x pixel coordinate

0

5

10

15

20

25

30
y 

pi
xe

l c
oo

rd
in

at
e

Channel G difference

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30

x pixel coordinate

0

5

10

15

20

25

30

y 
pi

xe
l c

oo
rd

in
at

e

Channel B difference

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60

x pixel coordinate

0

10

20

30

40

50

60

y 
pi

xe
l c

oo
rd

in
at

e

Channel R sample prob.

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0 10 20 30 40 50 60

x pixel coordinate

0

10

20

30

40

50

60

y 
pi

xe
l c

oo
rd

in
at

e

Channel G sample prob.

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0 10 20 30 40 50 60

x pixel coordinate

0

10

20

30

40

50

60

y 
pi

xe
l c

oo
rd

in
at

e

Channel B sample prob.

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

18 / 50



The Cooper Union Thesis 2018

Targeted Attack on MNIST

White-box C&W Black-box ZOO-ADAM

Figure: Row: crafted adversarial examples from original examples
in (a). Column: targeted attack class (‘0’ to ‘9’).
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Targeted Attack on CIFAR-10

White-box C&W Black-box ZOO-ADAM

Figure: Row: crafted adversarial examples from original examples
in (a). Column: targeted attack class.

[labelformat=empty]
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Attack on MNIST & CIFAR-10
Success rate close to white-box (C & W) attack - nearly
100%. Similar L2 distortion and reasonable attack time.

MNIST
Untargeted Targeted

Success Rate Avg. L2 Avg. Time (per attack) Success Rate Avg. L2 Avg. Time (per attack)
White-box (C&W) 100 % 1.48066 0.48 min 100 % 2.00661 0.53 min
Substitute Model + FGSM 40.6 % - 0.002 sec (+ 6.16 min) 7.48 % - 0.002 sec (+ 6.16 min)
Substitute Model + C&W 33.3 % 3.6111 0.76 min (+ 6.16 min) 26.74 % 5.272 0.80 min (+ 6.16 min)
ZOO-ADAM 100 % 1.49550 1.38 min 98.9 % 1.987068 1.62 min

CIFAR-10
Untargeted Targeted

Success Rate Avg. L2 Avg. Time (per attack) Success Rate Avg. L2 Avg. Time (per attack)
White-box (C&W) 100 % 0.17980 0.20 min 100 % 0.37974 0.16 min
Substitute Model + FGSM 76.1 % - 0.005 sec (+ 7.81 min) 11.48 % - 0.005 sec (+ 7.81 min)
Substitute Model + C&W 25.3 % 2.9708 0.47 min (+ 7.81 min) 5.3 % 5.7439 0.49 min (+ 7.81 min)
ZOO-ADAM 100 % 0.19973 3.43 min 96.8 % 0.39879 3.95 min
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Untargeted Attack on Inception-v3
black-box attacks to 150 ImageNet test images
(size 299× 299× 3)
2, 000 iterations (within 20 minutes) for each attack
reduced attack-space: 32× 32× 3

No hierarchical attack or importance sampling

Success Rate Avg. L2

White-box (C&W) 100 % 0.37310
Black-box (ZOO-ADAM) 88.9 % 1.19916
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Untargeted Attack on Inception-v3

Figure: ImageNet untargeted attack examples

23 / 50



The Cooper Union Thesis 2018

Targeted Attack on Inception-v3
Targeted attack is much harder than untargeted attack,
because we want to force the image to be misclassified
to specifically one class out of 1,000.

Before Attack: P (bagel) = 0.97, P (piano) = 0.000006

After Attack: P (bagel) = 0.006, P (piano) = 0.0061

L2 distortion: 3.425
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Targeted Attack on Inception-v3
Needs 20,000 iterations to perform this hard targeted
attack (about 4 hours). Attack-space dimension
reduction, hierarchical attack and importance sampling
techniques applied.
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Targeted Attack on Inception-v3

Figure: Left: the total loss ‖x− x0‖22 + c · f(x, t) versus iterations.
Right: c · f(x, t) versus iterations in log scale. When c · f(x, t)
reaches 0, a valid attack is found.
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Targeted Attack on Inception-v3

40 images from ImageNet test set, random target:
30.0% success within 2,000 iterations
72.5% success within 5,000 iterations
82.5% success rate within 10,000 iterations
95.0% success rate within 20,000 iterations
Average L2 distortion: 2.108
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Conclusions

1 Zeroth Order Optimization (ZOO) based black-box
attacks to deep neural networks can be applied to
large images by using the proposed attack-space
dimension reduction, hierarchical attack and
importance sampling techniques.

2 ZOO can achieve a success rate similar to
white-box attacks, without relying on transferability
or training an extra substitute model.
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No Box: EAD

Joint work with Pin-Yu Chen (IBM Research), Huan
Zhang (UC Davis), Jinfeng Yi (IBM Research), and

Cho-Jui Hsieh (UC Davis)
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Carlini & Wagner’s (C&W, 2017) Attack
Targeted attack formulation:

minimizex ‖x− x0‖22 + c · f (x, t) (7)
subject to x ∈ [0, 1]p,

C&W loss function:

f (x, t) = max{max
i6=t

[Z(x)]i − [Z(x)]t,−κ}, (8)
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Elastic-net Optimization
Elastic-net: minz f (z) + λ1‖z‖1 + λ2‖z‖22
⇒ Group feature selection for high-dimensional
machine learning problems
C&W: minx ‖x− x0‖22 + c · f (x, t)
⇒ Elastic-net: λ1 = 0, λ2 =

1

c
Why L1?
⇒ Convex regularizer that encourages sparsity in
the perturbation
Goal: Craft robust adversarial examples by limiting
unnecessary noise in the perturbation
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EAD Algorithm
Formulation:

minimizex c · f (x, t) + ‖x− x0‖22 + β‖x− x0‖1 (9)
subject to x ∈ [0, 1]p

Solution: Iterative Soft Thresholding Algorithm (ISTA)

[Sβ(z)]i =


min{zi − β, 1}, if zi − x0i > β;

x0i, if |zi − x0i| ≤ β;

max{zi + β, 0}, if zi − x0i < −β,
(10)

Interpretation: General and Robust
32 / 50
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EAD-ISTA
Algorithm 3 Elastic-Net Attacks to DNNs (EAD)

1: Input: original labeled image (x0, t0), target attack class
t, attack transferability parameter κ, L1 regularization pa-
rameter β, step size αk, # of iterations I

2: Output: adversarial example x

3: Let g(x) = c · f (x, t) + ‖x− x0‖22
4: Initialization: x(0) = y(0) = x0

5: for k = 0 to I − 1 do
6: x(k+1) = Sβ(y

(k) − αk∇g(y(k)))

7: y(k+1) = x(k+1) +
k

k + 3
(x(k+1) − x(k))

8: end for
9: Decision rule: determine x from successful examples in
{x(k)}Ik=1 (EN rule or L1 rule).
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Adversarial Examples

Figure: MNIST, CIFAR-10, ImageNet 34 / 50
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Performance (Targeted)
EAD attains 100% ASR and the least L1 distorted
adversarial examples.

MNIST CIFAR10 ImageNet
Attack method ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
C&W (L2) 100 22.46 1.972 0.514 100 13.62 0.392 0.044 100 232.2 0.705 0.03
FGM-L1 39 53.5 4.186 0.782 48.8 51.97 1.48 0.152 1 61 0.187 0.007
FGM-L2 34.6 39.15 3.284 0.747 42.8 39.5 1.157 0.136 1 2338 6.823 0.25
FGM-L∞ 42.5 127.2 6.09 0.296 52.3 127.81 2.373 0.047 3 3655 7.102 0.014
I-FGM-L1 100 32.94 2.606 0.591 100 17.53 0.502 0.055 77 526.4 1.609 0.054
I-FGM-L2 100 30.32 2.41 0.561 100 17.12 0.489 0.054 100 774.1 2.358 0.086
I-FGM-L∞ 100 71.39 3.472 0.227 100 33.3 0.68 0.018 100 864.2 2.079 0.01
EAD (EN rule) 100 17.4 2.001 0.594 100 8.18 0.502 0.097 100 69.47 1.563 0.238
EAD (L1 rule) 100 14.11 2.211 0.768 100 6.066 0.613 0.17 100 40.9 1.598 0.293
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Adversarial Training (MNIST)
Incorporating L1 examples complements adversarial
training and enhances attack difficulty in terms of
distortion.

Attack
method

Adversarial
training

Average case
ASR L1 L2 L∞

C&W
(L2)

None 100 22.46 1.972 0.514
EAD 100 26.11 2.468 0.643
C&W 100 24.97 2.47 0.684
EAD + C&W 100 27.32 2.513 0.653

EAD
(L1 rule)

None 100 14.11 2.211 0.768
EAD 100 17.04 2.653 0.86
C&W 100 15.49 2.628 0.892
EAD + C&W 100 16.83 2.66 0.87
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Attack Transferability (MNIST)
Transfer Attack from undefended network to defensively
distilled network
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Results Against Defenses

Joint work with Pin-Yu Chen (IBM Research)
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Ensemble Adversarial Training (ZOO)

Augment training data with with perturbations
transferred from other models.
→ State-of-the-art ImageNet defense
→ Top-performing model in NIPS 2017 competition
Perform non-targeted attack with ZOO on defended
Inception-v3 and Inception ResNet-v2
→ Achieve 100% success rate on 10 random
samples against both models
→ Visually imperceptible perturbations
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Madry Defense Model (EAD)

A high capacity network trained against PGD,
iterative FGSM with random starts.
→ State-of-the-art MNIST defense
Competition: Provided undefended models of the
same architecture.
→ Transfer to hidden defended model
→ Used EAD (EN Rule) with ensemble of 3
models.
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Results
EAD yields near 100% ASR in both the targeted and
non-targeted cases.

Targeted Non-Targeted
Attack Method Confidence ASR L1 L2 L∞ ASR L1 L2 L∞
PGD None 68.5 188.3 8.947 0.6 99.9 270.5 13.27 0.8
I-FGM None 75.1 144.5 7.406 0.915 99.8 199.4 10.66 0.9

C&W

10 1.1 34.15 2.482 0.548 4.9 23.23 1.702 0.424
30 69.4 68.14 4.864 0.871 71.3 51.04 3.698 0.756
50 92.9 117.45 8.041 0.987 99.1 78.65 5.598 0.937
70 34.8 169.7 10.88 0.994 99 119.4 8.097 0.99

EAD

10 27.4 25.79 3.209 0.876 39.9 19.19 2.636 0.8
30 85.8 49.64 5.179 0.995 94.5 34.28 4.192 0.971
50 98.5 93.46 7.711 1 99.6 57.68 5.839 0.999
70 67.2 148.9 10.36 1 99.8 90.84 7.719 1
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Adversarial Examples (Non-Targeted)
Performing elastic-net minimization aids in minimizing
visual distortion, even when the L∞ distortion is large.

Figure: Visual illustration of adversarial examples crafted in the
non-targeted case by EAD and PGD with similar average L∞
distortion (0.8).
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Feature Squeezing (EAD)
Relies on applying input transformations to reduce
the degrees of freedom available to an adversary.
→ Reduce the color bit-depth of images.
→ Using smoothing (both local and non-local).
Detection: the model’s original and squeezed
predictions are compared using the L1 norm.
→ Multiple feature squeezers are combined by
outputting the maximum distance.
→ Threshold chosen which is exceeded by no
more than 5% of legitimate samples.
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Results (MNIST)
EAD yields near 100% ASR in both the targeted and
non-targeted cases.

Non-Targeted Targeted
Next LL

Attack Method Confidence ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
I-FGSM None 100% 196.0 10.17 0.900 78% 169.8 8.225 0.881 67% 188.1 9.091 0.991

C&W

10 0% 21.05 1.962 0.568 0% 31.94 2.748 0.655 0% 37.78 3.207 0.732
20 15% 27,21 2.472 0.665 10% 40.51 3.419 0.763 24% 47.86 3.977 0.820
30 64% 34.30 3.019 0.754 67% 47.43 3.973 0.842 91% 59.56 4.811 0.888
40 87% 42.04 3.590 0.831 97% 61.12 4.938 0.922 100% 72.88 5.715 0.939

EAD

10 24% 11.44 2.286 0.879 7% 19.69 3.114 0.942 7% 23.99 3.481 0.955
20 80% 15.26 2.766 0.921 65% 26.80 3.752 0.964 78% 31.81 4.122 0.972
30 95% 20.17 3.264 0.957 97% 35.50 4.449 0.983 93% 39.68 4.769 0.991
40 97% 26.50 3.803 0.972 100% 44.75 5.114 0.992 100% 50.21 5.532 0.997
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Results (CIFAR-10)
EAD yields near 100% ASR in both the targeted and
non-targeted cases.

Non-Targeted Targeted
Next LL

Attack Method Confidence ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞
I-FGSM None 100% 81.18 1.833 0.070 100% 212.0 4.979 0.299 100% 214.9 5.042 0.300

C&W

10 32% 10.51 0.274 0.033 0% 14.25 0.368 0.042 0% 17.36 0.445 0.049
30 78% 28.80 0.712 0.073 51% 37.11 0.901 0.083 6% 41.51 1.006 0.093
50 96% 59.32 1.416 0.130 98% 82.54 1.954 0.169 94% 90.17 2.129 0.179
70 100% 120.2 2.827 0.243 100% 201.2 4.713 0.375 100% 212.2 4.962 0.403

EAD

10 46% 6.371 0.379 0.079 10% 8.187 0.508 0.109 0% 10.17 0.597 0.121
30 78% 18.94 0.876 0.146 51% 25.98 1.090 0.166 23% 29.58 1.209 0.175
50 94% 42.36 1.550 0.206 96% 62.90 2.094 0.247 90% 70.23 2.296 0.275
70 100% 83.14 2.670 0.317 100% 157.9 4.466 0.477 100% 172.8 4.811 0.502
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Adversarial Examples (Non-Targeted)

Figure: First row: Original,
Subsequent rows:
κ = {10, 20, 30}.

Figure: First row: Original,
Subsequent rows:
κ = {10, 30, 50}.
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Conclusion
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Summary
Validated effectiveness of ZOO as the
state-of-the-art black-box attack.
Validated effectiveness of EAD as the
state-of-the-art no-box attack.
Demonstrated attacks can succeed against
state-of-the-art defenses.
→ Ensemble Adversarial Training: ZOO
→ Madry Defense Model: EAD
→ Feature Squeezing: EAD
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Future Work

Explore gradient-free optimization strategies, like
Genetic Algorithms.
→ Estimating the gradient is costly (ZOO)
Extend black-box attack to real-world partial
information settings.
→ Top-N classes outputted
Extend algorithms to other domains.
→ Text + Speech
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Thank you!
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