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Abstract

We built a miniature autonomous vehicle which can navigate through maps consist-

ing of various road topologies. Our system is comprised of a perception module,

for detecting lanes and intersections, and a control module, for lane keeping and

turn making. A map was constructed for validation, and we have verified that our

vehicle can navigate while keeping within the lane lines. This report details the

background necessary for understanding our project, related work similar to ours

proposed by researchers, and the details of our approach.
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1 Introduction

The possibility of self-driving cars has fascinated us for decades now, but only recently have they

appeared to be an impending reality. By 2007, with the final DARPA Urban Challenge finishing in a

success, the seeds were planted for research in this field, and now the first commercial self-driving

cars appear to be close to market. Google, Tesla, Uber, and other large players in this space, already

have self-driving vehicles navigating through neighborhoods. At this point, the tasks remaining for

such companies are building self-driving vehicles with inexpensive equipment such that they can

be viable commercial products, and convincing the market of the safety of such systems, as one

malfunction could result in death.

Despite the progress that has been made in the field, little public research is available, as most

researchers working on this topic are in industry, aiming to beat their competitors in bringing an

autonomous vehicle to the market. This makes the project of building a self-driving car one ripe with

exploration. Therefore, we have decided to test in a controlled environment, so real-world complexity

can be added for experimentation and not ever-present, making the project inviable.

In order to get started in building self-driving cars, understanding the history of the field is important,

as it details the direction for future work. In the background section, we will discuss the DARPA

Challenges, and how self-driving car research has progressed since then. We then will discuss the

modern approaches to perception, sensor fusion, control, and planning. We will also discuss pertinent

information needed for understanding such approaches, such as machine learning, kalman filters, and

differential steering. In the related work section, we will discuss public research work, which has

mainly been focused on how artificial intelligence, principally deep learning, can be used to solve

self-driving cars’ most difficult problems.

We will then describe our project: a lane keeping and navigation assist system. We will first describe

our experimental setup: our vehicle, lane configurations, and navigation map. We will then discuss

our approach, which consists of perception and control submodules wrapped in a multithreaded

software architecture. We will discuss our current results, both quantitative and qualitative, and

finally, we will discuss possible future work, thus concluding our report.
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2 Background

In this section, we will discuss the history of self-driving car research, particularly the DARPA

challenges, which jump-started the field. We will then explain the techniques underlying the modern

self-driving car’s key subsystems: perception, sensors, the vehicle model, control, and planning.

2.1 DARPA Challenges

Self-driving cars are quite a hot topic nowadays, as nearly every automaker, tech company, and a

flock of startups are rushing to colonize an industry that has the potential to save tens of thousands of

lives, and generate trillions of dollars. What is shocking is how far we’ve come in the past ten years,

since the Defense Advanced Research Projects Agency, better known as DARPA, hosted their first

urban challenge for developing driverless cars.

The first competition was hosted in 2004, where every vehicle crashed, failed, or caught fire, most

of them in sight of the starting line. However, the competition ignited a community of people

interested in building this technology, and thus a second competition was hosted in 2005. Here, the

top-performing vehicle was from Stanford University, built by the Stanford Racing Team led by

Sebastien Thrun, and the basis for its functionality was machine learning. The vehicle, called Stanley,

was trained for generating appropriate speeds and steering angles, given the environmental state, in

order to safely and efficiently navigate across a desert. This use of artificial intelligence set the stage

for learning techniques to dominate recent research in solving autonomous vehicles’ most difficult

questions [31].

For the final DARPA challenge, hosted in 2007, a more realistic environment was used, an urban

environment with multiple vehicles navigating simultaneously. Various tasks were given, such as

executing three-point turns, parking and more, while constraining the vehicles to not crash into other

vehicles and obey California’s driving rules. The results were widely successful; 6 teams ended up

fully finishing the challenge. This time around, CMU’s “Boss” defeated Stanford’s “Junior” and

placed first [32, 25].

With the success of this final urban challenge, the community was convinced self-driving vehicles

will become a reality in the near future. However, significant hurdles would have to be overcome to

achieve the urban challenge’s encouraging results in the real world.

2.1.1 Beyond DARPA

As can be seen in Figure 1, a typical vehicle in the DARPA challenge carried multiple LIDARs,

Radars, a highly sensitive IMU, and computing power of a dozen computers [32]. Moreover, an
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Figure 1: Typical setup for a competitor in the DARPA Urban Challenge

exact digital map of the road network coupled with updated aerial imagery was supplied to the

competitors [25]. The combination of the detailed map information with the exact positioning

equipment (GPS+IMU) enabled localization of the vehicle with respect to the map in resolution of

approximately 1 meter [25]. Since the typical road width, as well as the width of the lanes in the urban

challenge is usually around 4-5 meters, such resolution is nearly enough for the vehicle to navigate

itself blindly - without any onboard perception. Five of the six finishing competitors in the urban

challenge did not use the vision modality at all. In contrast to the global positioning based solutions

developed for the DARPA challenge, lane and road perception for commercial vehicles has to be con-

ducted with affordable sensors, which currently include mostly vision, GPS and certain radar types.

Without exact information, the control and planning tasks are exponentially harder, therefore devel-

oping algorithms which succeed in these tasks in the real world has proven to be a non-trivial task [16].

2.2 Perception

Perception involves acquiring information about the environment from raw pixel data. In the case of

self-driving cars, this typically means detecting lane lines and the surrounding vehicles. We will

discuss the classical computer vision and deep learning techniques which have been used to perform

these tasks in a robust manner.
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Figure 2: Two common forms of radial distortion: barrel distortion and pincushion distortion

2.2.1 Camera Calibration

With the introduction of cheap, pinhole cameras in the late 20th century, cameras became a common

occurence in our everyday life. Unfortunately, this cheapness comes with a price, significant distortion.

Two major distortions which are introduced are radial distortion and tangential distortion.

Radial distortion is radially symmetric, or approximately so, arising from the symmetry of a pho-

tographic lens. An example of radial distortion can be seen in Figure 2. Due to radial distortion,

straight lines will appear curved. Positive radial distortion, barrel distortion, induces the visible effect

where lines which do not go through the center of the image are bowed outwards, away from the

center. On the other hand, negative radial distortion, pincushion distortion, forces such lines to bow

inwards, towards the center of the image. This distortion is represented as follows:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6

where ki are radial distortion coefficients [35]. Similarly, tangential distortion occurs because image-

taking lenses are not aligned perfectly parallel to the imaging plane. So, some areas in the image may

look nearer than expected. This is represented as below:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorted = y + [2p2xy + p1(r
2 + 2y2)]

where pi are tangential distortion coefficients. Therefore, the goal is to find these radial and tangential

distortion coefficients. However, the extrinsic and intrinsic parameters of the camera need to be

determined. Extrinsic parameters correspond to rotation and translation vectors which translates the

coordinates of a 3D point to a coordinate system. Intrinsic parameters are specific to the camera, such

as information like focal length (fx, fy) and optical centers (cx, cy).
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Figure 3: An example of applying the perspective transform to obtain a “bird’s eye view”

In order to determine these parameters, sample images of a well-defined pattern, such as a chessboard,

under different orientations have to be provided. Then, feature points need to be detected in the

image, such as square corners in the chessboard. With this, a closed-form solution has been derived to

estimate the intrinsic and extrinsic parameters of the camera. With that, the distortion coefficients can

be estimated by finding the linear least-squares closed-form solution. These closed-form solutions

are obtained through minimizing an algebraic distance which is not physically meaningful, and thus

all parameters are refined via maximum likelihood inference. Details on the complete algorithm can

be found in [35]. With these parameters, the effects of distortion on any image produced by the same

camera can be undone.

2.2.2 Perspective Transform

Geometric image transformations are functions which do not change the image content but deform

the pixel grid and map this deformed grid to the destination image. In fact, to avoid sampling artifacts,

the mapping is done in the reverse order, from destination to the source. That is, for each pixel (x, y)

of the destination image, the functions compute coordinates of the corresponding “donor” pixel in the

source image and copy the pixel value:

dst(x, y) = src(fx(x, y), fy(x, y))

where < fx, fy > specifies the inverse mapping.

The perspective transform is a geometric transformation intended on converting the 3D world

represented in an image into a 2D one. Depending on the coordinates of quadrangle vertices in the

source image provided, one can compute a perspective transform which yields a “bird’s eye view”

of the original image. An example of this can be seen in Figure 3. This is of interest as a “bird’s

eye view” can very much simplify the analysis of a particular image. Computing the perspective

transform amounts to finding a set of coefficients which transform a set of points (xi, yi) to the set of

points (ui, vi) for i = 0, 1, 2, 3 as follows:
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ui =
a0xi+a1yi+a2

c0xi+c1yi+1

vi =
b0xi+b1yi+b2
c0xi+c1yi+1

The eight coefficients can be calculated by solving the following linear system:



x0 y0 1 0 0 0 −x0u0 −y0u0
x1 y1 1 0 0 0 −x1u1 −y1u1
x2 y2 1 0 0 0 −x2u2 −y2u2
x3 y3 1 0 0 0 −x3u3 −y3u3
0 0 0 x0 y0 1 −x0v0 −y0v0
0 0 0 x1 y1 1 −x1v1 −y1v1
0 0 0 x2 y2 1 −x2v2 −y2v2
0 0 0 x3 y3 1 −x3v3 −y3v3





a0

a1

a2

a3

b0

b1

b2

b3



=



u0

u1

u2

u3

v0

v1

v2

v3



There are many available software packages for solving linear systems of equations efficiently. The

solution to this system yields the perspective transform [30].

2.2.3 Edge Detection

Edge detection includes a variety of mathematical methods that aim at identifying points in a digital

image at which the image brightness changes sharply or, more formally, has discontinuities. The

points at which image brightness changes sharply are typically organized into a set of curved line

segments termed edges.

The purpose of detecting sharp changes in image brightness is to capture important events and

changes in properties of the world. In the ideal case, the result of applying an edge detector to an

image may lead to a set of connected curves that indicate the boundaries of objects, the boundaries of

surface markings as well as curves that correspond to discontinuities in surface orientation. Thus,

applying an edge detection algorithm to an image may significantly reduce the amount of data to

be processed and may therefore filter out information that may be regarded as less relevant, while

preserving the important structural properties of an image. If the edge detection step is successful,

the subsequent task of interpreting the information contents in the original image may therefore be

substantially simplified.

Most edge detection algorithms operate upon grayscale images, however there are methods to do

color edge detection, the simplest of which, called the output fusion method, applies edge detectors
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Figure 4: Example of Sobel edge detector

to the three color channels (RGB or HSV) independently, then combines the results using a logical

operation. Some approaches apply various color transformations, such as converting to the LAB

or HLS colorspaces, then combining edge detection results on pertinent channels in each of the

spaces. There are also more sophisticated methods, called multi-dimensional gradient methods, which

treat the three channels as coordinates of the 3D color space, and try to find edges by analyzing the

gradient [5]. However, most practical applications convert the color images to grayscale, as the color

information is deemed unimportant for edge detection.

The basis for any edge detection algorithm are the intensity gradients of the image. The Sobel edge

detector makes use of two 3x3 convolution kernels [20]. Each is used to approximate a change in the

gradient along the vertical and horizontal axis. After convolving each of these kernels with a matrix

representation of the image, the values Gx and Gy , which represent the gradient along the horizontal

and vertical axis respectively, are calculated for each individual point of the image.

After obtaining the values Gx and Gy for each point of the image, the magnitude of the gradient

is then calculated as |G| =
√
G2

X +G2
y. Next the angle of orientation of each point is calculated

as being θ = arctan(Gx/Gy) [20]. Thus, once the gradients are calculated, this can now be used

to identify edges. Points where the gradient is very high can be labeled as edges and those with

low gradients are not. However, the threshold for this gradient is very important. This is a user

defined parameter that will have to be defined based on the environment variables. For example, for

lane detection, the threshold has to be set such the lane markers have to be identified. This can be

quite difficult since the threshold would have to take into account various types of lanes in different

settings [23].

An example of the Sobel operator at work is shown in Figure 4 [2]. You can see that the outline of

the lanes and terrain in the background are identified clearly. Because there is a significant gradient
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difference between the the lanes and the dark roads, the Sobel operator is able to easily find these

edges and extract these features for further processing.

A commonly discussed issue with the Sobel operator is that it is an approximation. Because the

pixels on an image are discrete, it is not possible to obtain a continuous gradient along the contours

of the image. Therefore, the smoothing that occurs through the convolution operations from before

are essentially approximations. While this may be true, the performance of this method is still quite

robust. This is mainly because gradient drops are not typically continuous either [20].

Besides the Sobel operator, another commonly used method for edge detection is Canny edge

detection [7]. Again, just like Sobel, Canny looks at gradient differences in the image to detect edges.

However, unlike the Sobel operator, Canny has a complicated pipelined process that one has to follow

to detect edges.

The first step in Canny edge detection is to remove any noise. Again, because we are looking for

gradient differences, any significant gradient drop will be picked up. Therefore, there may be isolated

pixels where the gradient drops off suddenly. To remove such noise from an image, Canny first

convolves the image with a Gaussian filter. This is typically known as applying a Gaussian blur. This

smooths the image by blurring the image. Therefore, the isolated pixels that have gradient drops

won’t be picked up at later stages.

Following this application of a Gaussian blur, the next step is to find the intensity gradients of the

image. This process is exactly the same as that which was described previously for the Sobel operator.

The magnitude of the the gradient is found by convolving a Sobel kernel with the image.

Once the intensity gradients are found at each pixel, the next step removes any unwanted pixels from

the image. This is done by using a technique called non-maximum suppression. Here, each pixel is

checked to see whether it is a local minimum in the direction of the gradient. If this is not the case,

the pixel value is set to zero. This process is intended to find connected pixels that may form an edge

within the image and to suppress any pixels that are otherwise not.

The final step in this process is thresholding. A minimum and maximum value for the gradient

are entered as parameters. Any pixel whose gradient is above the max threshold is automatically

categorized as a pixel and any pixel whose gradient is below the min threshold is categorized as not

a pixel. However, what makes Canny edge detection so robust is the fact that that it also considers

the connectivity of pixels. So, if there is a connected line of pixels in which some of the pixels

are between the minimum and maximum threshold, then all the pixels in that connected line are

categorized as edges. Other techniques simply classify an edge using one threshold [7].
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Figure 5: Example of Canny edge detector

Shown in Figure 13 is an example of Canny edge detection for extracting features from an image with

lanes [4]. It is effective in identifying the edges of the lanes as well as the dash marks. What makes

Canny edge detection quite unique is that it can work in any environment, because of its effectiveness

in reducing noise in the image.

2.2.4 Deep Learning

A machine learning algorithm is an algorithm that is able to learn from data. The central challenge of

machine learning is to not just perform well on the data at hand, but to also perform well on new,

previously unseen inputs. This task is called generalization. Typically, when training a machine

learning model, we have access to a training set, we can compute some error measure on the training

set called the training error, and we reduce this training error. So far, what we have described is

simply an optimization problem. What separates machine learning from optimization is that we

want the generalization error, also called the test error, to be low as well. The generalization error

is defined as the expected value of the error on a new input. Here the expectation is taken across

different possible inputs, drawn from the distribution of inputs we expect the system to encounter in

practice. We typically estimate the generalization error of a machine learning model by measuring its

performance on a test set of examples that were collected separately from the training set.

The factors determining how well a machine learning algorithm will perform are its ability to 1) make

the training error small, and 2) make the gap between the training and test error small. These two

factors correspond to the two central challenges in machine learning: underfitting and overfitting.

Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training

set. Overfitting occurs when the gap between the training error and test error is too large. We can

control whether a model is more likely to overfit or underfit by altering its capacity. Informally,

a model’s capacity is its ability to fit a wide variety of functions. Models with low capacity may

struggle to fit the training set. Models with high capacity can overfit by memorizing properties of the

training set that do not serve them well on the test set. Machine learning algorithms will generally

perform best when their capacity is appropriate for the true complexity of the task they need to

perform and the amount of training data they are provided with. Models with insufficient capacity are
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unable to solve complex tasks. Models with high capacity can solve complex tasks, but when their

capacity is higher than needed to solve the present task they may overfit.

Learning theory claims that a machine learning algorithm can generalize well from a finite training

set of examples. This seems to contradict some basic principles of logic. Inductive reasoning, or

inferring general rules from a limited set of examples, is not logically valid. To logically infer a

rule describing every member of a set, one must have information about every member of that set.

In part, machine learning avoids this problem by offering only probabilistic rules, rather than the

entirely certain rules used in purely logical reasoning. Machine learning promises to find rules that

are probably correct about most members of the set they concern. Unfortunately, even this does not

resolve the entire problem. The no free lunch theorem for machine learning states that, averaged

over all possible data generating distributions, every classification algorithm has the same error rate

when classifying previously unobserved points. In other words, in some sense, no machine learning

algorithm is universally any better than any other. The most sophisticated algorithm we can conceive

of has the same average performance (over all possible tasks) as merely predicting that every point

belongs to the same class [34].

Fortunately, these results hold only when we average over all possible data generating distributions.

If we make assumptions about the kinds of probability distributions we encounter in real-world

applications, then we can design learning algorithms that perform well on these distributions. This

means that the goal of machine learning research is not to seek a universal learning algorithm or

the absolute best learning algorithm. Instead, our goal is to understand what kinds of distributions

are relevant to the “real world” that an AI agent experiences, and what kinds of machine learning

algorithms perform well on data drawn from the kinds of data generating distributions we care about.

Supervised learning algorithms are, roughly speaking, learning algorithms that learn to associate some

input with some output, given a training set of examples of inputs x and outputs y. In many cases the

outputs y may be difficult to collect automatically and must be provided by a human “supervisor,”

but the term still applies even when the training set targets were collected automatically. There are

various supervised learning algorithms, such as logistic regression, support vector machines, and

decision trees, which can be used for perception tasks. For example for identifying vehicles in a

dashcam video, a support vector machine can be trained on images of cars and non-cars and then run

a sliding window search on each video frame to identify the location of any cars. However, training a

classifier on raw image data is unnecessary and incredibly computationally expensive. Features have

to be extracted from the images to train such classifiers. Methods to do so include grouping color

features into bins spatially, histograms of color, and the Histogram of Oriented Gradients (HOG)

method [8].
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The performance of machine learning algorithms depends heavily on the representation of the data

they are given. For example, when logistic regression is used to recommend cesarean delivery, the AI

system does not examine the patient directly. Instead, the doctor tells the system several pieces of

relevant information, such as the presence or absence of a uterine scar. Each piece of information

included in the representation of the patient is known as a feature. Logistic regression learns how

each of these features of the patient correlates with various outcomes. However, it cannot influence

the way that the features are defined in any way. If logistic regression was given an MRI scan of the

patient, rather than the doctor’s formalized report, it would not be able to make useful predictions.

Individual pixels in an MRI scan have negligible correlation with any complications that might occur

during delivery [14].

Many artificial intelligence tasks can be solved by designing the right set of features to extract for

that task, then providing these features to a simple machine learning algorithm. For example, a useful

feature for speaker identification from sound is an estimate of the size of speaker’s vocal tract. It

therefore gives a strong clue as to whether the speaker is a man, woman, or child. However, for

many tasks, it is difficult to know what features should be extracted. For example, in our vehicle

detection example, we know that cars have wheels, so we might like to use the presence of a wheel as

a feature. Unfortunately, it is difficult to describe exactly what a wheel looks like in terms of pixel

values. A wheel has a simple geometric shape but its image may be complicated by shadows falling

on the wheel, the sun glaring off the metal parts of the wheel, the fender of the car or an object in

the foreground obscuring part of the wheel, and so on. The feature extraction methods discussed

previously do a better job than the manual approach described, but are generic in that they don’t adapt

to the specific problem at hand.

One solution to this problem is to use machine learning to discover not only the mapping from

representation to output but also the representation itself. This approach is known as representation

learning [14]. Learned representations often result in much better performance than can be obtained

with hand-designed representations. They also allow AI systems to rapidly adapt to new tasks, with

minimal human intervention. A representation learning algorithm can discover a good set of features

for a simple task in minutes, or a complex task in hours to months. Manually designing features

for a complex task requires a great deal of human time and effort; it can take decades for an entire

community of researchers.

When designing features or algorithms for learning features, our goal is usually to separate the factors

of variation that explain the observed data. In this context, we use the word “factors” simply to refer

to separate sources of influence; the factors are usually not combined by multiplication. Such factors

are often not quantities that are directly observed. Instead, they may exist either as unobserved objects

or unobserved forces in the physical world that affect observable quantities. They may also exist as
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Figure 6: Illustration of a deep learning model

constructs in the human mind that provide useful simplifying explanations or inferred causes of the

observed data. They can be thought of as concepts or abstractions that help us make sense of the

rich variability in the data. When analyzing a speech recording, the factors of variation include the

speaker’s age, their sex, their accent and the words that they are speaking. When analyzing an image

of a car, the factors of variation include the position of the car, its color, and the angle and brightness

of the sun.

A major source of difficulty in many real-world artificial intelligence applications is that many of

the factors of variation influence every single piece of data we are able to observe. The individual

pixels in an image of a red car might be very close to black at night. The shape of the car’s silhouette

depends on the viewing angle. Most applications require us to disentangle the factors of variation

and discard the ones that we do not care about. Of course, it can be very difficult to extract such

high-level, abstract features from raw data. Many of these factors of variation, such as a speaker’s

accent, can be identified only using sophisticated, nearly human-level understanding of the data.

When it is nearly as difficult to obtain a representation as to solve the original problem, representation

learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by introducing representations

that are expressed in terms of other, simpler representations. Deep learning allows the computer to

build complex concepts out of simpler concepts. Figure 6 shows how a deep learning system can

represent the concept of an image of a person by combining simpler concepts, such as corners and

contours, which are in turn defined in terms of edges [14].

Deep neural networks have achieved amazing results in recent years, particularly in computer vision.

For these tasks, a variant on deep neural networks has been utilized, called convolutional neural
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networks [22]. Convolutional neural networks emerged from the study of the brain’s visual cortex,

stemming from the observations that many neurons in the visual cortex have small local receptive

field, they only react to visual stimuli located in a limited region of the visual field, and the receptive

fields of different neurons typically overlap, together tiling the whole visual field. Furthermore,

some neurons have larger receptive fields, and react to more complex patterns that are combinations

of the lower-level patterns. Given these biological identifications, convolutional architectures are

typically defined by stacking convolutional layers and pooling layers. Convolutional layers are

partially connected, meaning neurons in the first convolutional layer are only connected to pixels in

their receptive fields. These layers are essentially filters, called convolutional kernels, where each

neuron focuses on low-level features, filtering out all inputs that do not contain said features. During

training, the network finds the most useful filters for its task, and learns to combine them into more

complex patterns. Furthermore, multiple filters are simultaneously applied to the inputs, making

it capable of detecting multiple features anywhere in its input. Pooling layers subsample the input

image in order to reduce the computational load and the number of trainable parameters, thereby

limiting the risk of overfitting.

Convolutional neural networks have become the standard tool for performing image recognition since

2012, when AlexNet was able to trounce the state-of-the-art classical computer vision techniques

in the ImageNet Large-Scale Visual Recognition Challenge, a competition which has been called

the annual "Olympics" for computer vision. 2012 marked the first year where a CNN was used to

achieve a test error rate of 15.4%. The next best entry achieved an error of 26.2% [21, 10]. Since

then, convolutional architectures have grown larger and more complex, achieving amazing results

and remaining computationally tractable due to simultaneous GPU processing optimizations. These

excellent image recognition results have readily transferred over to perception tasks for self-driving

cars.

2.3 Sensors

So far we have discussed perception methods, which are relevant when a camera is used as a sensor

module. However, real-world self-driving vehicles have typically used other sensors, such as LIDAR

and RADAR for executing perception. LIDAR is a light-based RADAR. The sensor sends out short

pulses of invisible laser light, and times how long it takes to see the reflection. From this you learn

both the brightness of the target, and how far away it is, with good accuracy. LIDAR generates a 3-D

map of the world around you, making it easier to detect objects in the presence of others. Furthermore,

LIDAR uses emitted light, so it works independent of the ambient light. Night or day, clouds or sun,

shadows or sunlight, it pretty much sees the same in all conditions. Therefore, despite being very

expensive, multiple LIDARs are currently being used along with camera systems in order to generate

input to the perception module.
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However, with multiple sensors involved, how does one utilize them all to generate a more accurate

measurement input? Kalman filters are the key mathematical tool for fusing together data, and thus

are discussed in more detail in Section 2.3.1. With sensor fusion results, one can accomplish the

localization task. This is even possible when the map is unknown, by taking the SLAM approach [11].

2.3.1 Sensor Fusion

Kalman filtering is an algorithm that uses a series of measurements observed over time, containing

statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to

be more accurate than those based on a single measurement alone, by estimating a joint probability

distribution over the variables for each timeframe [19]. The algorithm works in a two-step process.

In the prediction step, the Kalman filter produces estimates of the current state variables, along with

their uncertainties. Once the outcome of the next measurement (necessarily corrupted with some

amount of error, including random noise) is observed, these estimates are updated using a weighted

average, with more weight being given to estimates with higher certainty. The algorithm is recursive.

It can run in real time, using only the present input measurements and the previously calculated state

and its uncertainty matrix; no additional past information is required. Using a Kalman filter does

not assume that the errors are Gaussian, however, the filter yields the exact conditional probability

estimate in the special case that all errors are Gaussian-distributed.

The Kalman filter is a recursive estimator. This means that only the estimated state from the previous

time step and the current measurement are needed to compute the estimate for the current state. In

contrast to batch estimation techniques, no history of observations and/or estimates are required. The

Kalman filter can be written as a single equation, however it is most often conceptualized as two

distinct phases: "Predict" and "Update". The predict phase uses the state estimate from the previous

timestep to produce an estimate of the state at the current timestep. This predicted state estimate

is also known as the a priori state estimate because, although it is an estimate of the state at the

current timestep, it does not include observation information from the current timestep. In the update

phase, the current a priori prediction is combined with current observation information to refine the

state estimate. This improved estimate is termed the a posteriori state estimate. Typically, the two

phases alternate, with the prediction advancing the state until the next scheduled observation, and the

update incorporating the observation. However, this is not necessary; if an observation is unavailable

for some reason, the update may be skipped and multiple prediction steps performed. Likewise,

if multiple independent observations are available at the same time, multiple update steps may be

performed [19].

Extensions and generalizations to the method have also been developed, such as the extended Kalman

filter (EKF) and the unscented Kalman filter (UKF) which work on nonlinear systems. The EKF
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linearizes about an estimate of the current mean and covariance. In the original Kalman filter

formulation, the model assumes the true state at time k is evolved from the state at time (k-1)

according to:

xk = Fkxk−1 +Bkuk + wk

where Fk is the state transition model which is applied to the previous state xk−1, Bk is the control-

input model which is applied to the control vector uk, and wk is the process noise which is assumed

to be drawn from a zero-mean multivariate normal distribution. At time k an observation (or

measurement) zk of the true state xk is made according to:

zk = Hkxk + vk

where Hk is the observation model which maps the true state space into the observed space and

vk is the observation noise which is assumed to be drawn from a zero-mean multivariate normal

distribution. In the EKF formulation, the state transition and observation models don’t need to be

linear functions of the state but may instead be differentiable functions. When the state transition

and observation models are highly non-linear, the extended Kalman filter can give particularly poor

performance. This is because the covariance is propagated through linearization of the underlying non-

linear model. The UKF uses a deterministic sampling technique known as the unscented transform to

pick a minimal set of sample points (called sigma points) around the mean. These sigma points are

then propagated through the non-linear functions, from which a new mean and covariance estimate

are then formed. The result is a filter which, for certain systems, more accurately estimates the true

mean and covariance than EKF [18].

Alternatives to the Kalman filter include the particle filter. Particle filtering uses a genetic mutation-

selection sampling approach, with a set of particles (also called samples) to represent the posterior

distribution of some stochastic process given noisy and/or partial observations. The state-space model

can be nonlinear and the initial state and noise distributions can take any form required. Particle filters

implement the prediction-updating transitions of the filtering equation directly by using a genetic

type mutation-selection particle algorithm. The samples from the distribution are represented by a set

of particles; each particle has a likelihood weight assigned to it that represents the probability of that

particle being sampled from the probability density function [9].

Kalman filters and particle filters are quite related - The Kalman filter bakes the uncertainty into our

best-guess state by representing it as a multidimensional Gaussian, stretching a single belief out to

encompass a large area, whereas the particle filter peppers a number of discrete copies of that best

guess over relatively the same area.
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2.3.2 Localization

In order to apply the Kalman filter or the particle filter to the tracking task, one needs to incorporate

motion models. The simplest motion model, the constant velocity (CV) model, assumes that, if

a pedestrian is being tracked, the pedestrain will continue to move in that way from one moment

to the next, and any change in that motion, acceleration, is modeled by the “process noise”. The

constant turn rate and velocity (CTRV) model trades the x and y components of the velocity for a

direction and magnitude, and adds in a “yaw rate” component - the change in heading from one

moment to the next. Other motion models include constant turn rate and acceleration (CTRA) and

constant curvature and acceleration (CCA) which introduce additional state parameters. For vehicle

location tracking, researchers find, unsurprisingly, unsurprisingly, that the models perform similarly

for highway driving, but that in an urban setting the more complex motion models outperform the

simpler ones [28].

With a motion model in place, sensor fusion methods can be used to fuse noisy LIDAR data together

to track a pedestrian, or any obstacle from one’s own vehicle’s perspective. Localization involves

finding one’s own uncertain location in a known, mapped area. With known ground truth landmark

locations, LIDAR data representing the observed location of landmarks in relation to the vehicle, and

vehicle control data, these methods can also be applied for solving the localization task.

2.3.3 Mapping

Localizing one’s own vehicle requires knowledge of the environment. In most situations, a known

map is provided; however when one is unavailable, localization can still be done by approaching

the task as a SLAM problem. In robotic mapping and navigation, simultaneous localization and

mapping (SLAM) is the computational problem of constructing or updating a map of an unknown

environment while simultaneously keeping track of an agent’s location within it. Given a series of

sensor observations ot over discrete time steps t, the SLAM problem is to compute an estimate of

the agent’s location xt and a map of the environment mt. Therefore, the objective is to compute

P (mt, xt|o1:t).

Applying Bayes’ rule gives a framework for sequentially updating the location posteriors, given

a map and a transition function P (xt|xt−1). The map can be updated sequentially in a similar

manner. Like many inference problems, the solutions to inferring the two variables together can

be found, to a local optimum solution, by alternating updates of the two beliefs in a form of EM

(expectation-maximization) algorithm. The Kalman filter and Particle filter can be used as statistical

estimation techniques for solving the SLAM problem [11].
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2.4 Vehicle

Understanding the dynamics of a vehicle is important, especially when operating it for navigation

tasks. Therefore, in this section we will discuss differential steering and the elements of two-wheel

drive.

2.4.1 Differential Steering

The main basis behind differential steering is that there are two separate wheels, each acting inde-

pendently of each other. If both wheels were to spin at the same speed, then the axle that joins these

two wheels would go straight forward at a constant speed. However, if one would wheel were to

spin faster than the other, then this would lead to a differential in rotational speed between the two

wheels.This differential becomes the essence of how an axle turns. Because of the differential, there

is less torque being applied to one side as compared to other. As a result of this, the axle that joins

both wheels follows a radial path in the direction of the slower wheel.

Figure 7: Demonstration of dynamics of differential steering

Figure 7 demonstrates the dynamics of differential steering. The variables shown in the diagram

are all important in formulating the kinematic equations behind differential steering. To formalize

the math behind this phenomenon, lets first define vl and vr as the speeds of the two wheels that are

joined by an axle. The rotation of the axle occurs on the axis that is common to both the right and left

and wheels. So, lets define the point that the axle rotates about as being the instantaneous center of

curvature (ICCC). The rate of rotation is common along all points of the axle and so can be defined

as being ω. A set of equations relates this rate of rotation, ω, to the respective velocities vl and vr of

the two wheels. These equations are respectively, ω(R+ l/2) = vr and ω(R− l/2) = vl . Solving

for ω, we get that ω = vr−vl
l , where l is the distance between the two wheels and R is the distance

between the center point of the axle and the ICCC. Therefore, by controlling the speeds of the two

wheels vl and vr, precise steering of the axle at a specific rate of rotation can be achieved [12].
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2.4.2 2-Wheel Drive

A 2-wheel drive vehicle is one in which only two wheels receive power. On a four wheeled vehicle,

a 2-wheel drive provides sufficient traction and is also a simple design to implement. The vehicle

itself can be configured to be either run off the front two wheels or the back two wheels. This is

known as either front-wheel drive or rear-wheel drive. One main advantage of the front-wheel drive

is that it provides better traction. This is because the weight of the engine is balanced by the front

two wheels and thus allows for less slippage. On the other hand one main advantage of a rear-wheel

drive is that there is better balance overall for the vehicle and it also also for better initial acceleration.

The steering mechanism for a 2-wheel drive is implemented with differential steering. Most vehicles

today use what is known as a differential. The differential distributes different levels of power to each

wheel in order to steer [1].

2.5 Control

The control algorithm’s goal is to take the perception and sensor fusion modules’ outputs as input and

yield an actuation where, on average, the difference between the current trajectory and the desired

trajectory is minimized. The PID Controller is the classic closed-loop controller used for this problem,

and will be discussed in more detail below. Model predictive control (MPC), a more sophisticated

control algorithm used for stabilizing the vehicle in a noisy environment, will also be touched on.

2.5.1 PID Controller

The PID controller is a control feedback system that provides automatic control in a variety of

applications. The main advantage of the PID controller, which will be discussed in further detail,

is the precise correction that the controller applies to a system as a result of its use of three compo-

nents. These three components include proportional control, integral control, and derivative control

components. Each of these components allows for the controller to minimize error over time.

It is first important to define how error is calculated within a PID controller. Error is defined as being

the difference between the setpoint and the process variable. The setpoint is the desired or target

value for a specific variable in the system while the process variable is the measured value of a system

process. This defined error term is what the PID controller seeks to minimize and is thus the input

into the three aforementioned components of the controller. The full mathematical form of the PID

controller is defined as being u(t) = Kpe(t) +Ki

∫ t

ti
e(τ)dτ +Kd

de(t)
dt where each of the additive

terms are respectively the proportional, integral, and derivative terms and u(t) represents the output

control variable that should be adjusted. Figure 8 shows the system diagram for the PID controller.

Each of the three components take in the error term as input and are then summed to obtain the

process variable. The output of the system is then fed back in order to calculate the new error at the

next time step.
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Figure 8: PID controller System Diagram

The proportional term of the PID controller is used to adjust the output control variable by an amount

proportional to the error. The proportional gain constant, Kp, defines the sensitivity of the the

control variable to the error term. Therefore a larger gain constant would mean that if there is a

great change in the error, then there will an equally great change in the output control variable. This

proportional gain constant, Kp, has to be tuned so that the controller will respond appropriately to

system disturbances while also preserving the stability of the system.

The integral term of the PID controller is the sum of past errors of the system. Since the integral

term is essentially an accumulation of the past errors, it is typically used to eliminate the steady state

error of the system. The integral gain constant, Ki, impacts how quickly the steady state error of the

system is eliminated and how quickly the error of the system is approaching zero. The integral term

can cause oscillatory behavior in the system since the integral gain constant, Ki, affects whether the

process variable overshoots or undershoots the setpoint. Therefore, just like with the proportional

gain constant, the integral gain constant term has to be tuned to avoid significant oscillatory behavior

in the system.

Finally, the derivative term of the PID controller is a way in which the controller can account for

the rate of change of the error over time. Respectively the proportional and integral terms take

into account past and current errors. However, the derivative term allows the PID controller to

anticipate future behavior. The derivative gain constant, Kd, can be used to avoid undershooting over

overshooting the setpoint. Since the derivative term takes into account the rate of change of the error

term, it can be used to minimize ripple in the system response and preserve stability of the system [3].

As with any control system, stability is a concern for the PID controller. The respective gain constants

for each of the three terms have to be tuned in order to avoid overly oscillatory behavior and excessive

gain in the process variable at any one time instant. The transfer function for the PID controller is

defined as being C(s) = Kds
2+Kps+Ki

s . Then the complete loop transfer function, that takes into

account feedback shown in Figure 8, is H(s) = C(s)P (s)
1+C(s)P (s) where P (s) represents the transfer

function for the process variable. By the Nyquist stability criterion [26], the closed loop system
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maintains stability when |C(s)G(s)| < 1. This criteria ensures that the gain of the system isn’t

excessive and is bounded.

One method for tuning the weights of the PID controller is the Ziegler-Nichols method [36]. This

method follows a specific procedure geared toward each component of the PID controller. First,

the Kd and Ki terms are held to zero. The value of Kp is incrementally increased until the system

response achieves critical gain. Critical gain would mean that the system response is stable and has

oscillations that are bounded and periodic. Once this is achieved, then the Ki and Kd terms are

then adjusted to remove the steady state error and minimize the periodic oscillations in the system’s

response.

What makes the PID Controller easy to use is the fact that the parameters are interpretable, and thus

can be manually tuned. Since each term has a specific role in the system’s response, one can tune the

weights based on the type of behavior they are seeking.

Figure 9: How PID parameters affect the system performance

Figure 9 shows how each of the components of the PID controller impacts various characteristics of

the system response. As discussed earlier, the steady state error is decreased by the Kp and Ki terms

while settling time of the system is increased by the Ki term and decreased by the Kd term. Finally,

oscillatory behavior of the system such as overshooting the setpoint is increased by the proportional

and integral terms while the derivative term limits overshoot.

2.5.2 Model Predictive Control

Model predictive control (MPC) is an advanced method which relies on dynamic models of the

process, most often linear empirical models obtained by system identification. The main advantage

of MPC is the fact that it allows the current timeslot to be optimized, while keeping future timeslots

in account. This is achieved by optimizing a finite time-horizon, but only implementing the current

timeslot and then optimizing again, repeatedly, thus differing from LQR. Also MPC has the ability to

anticipate future events and can take control actions accordingly. PID controllers do not have this

predictive ability.

MPC can take a vehicle’s motion model into account to plan out a path that makes sense given a set

of constraints, based on the limits of the vehicle’s motion, and a combination of costs that define how

we want the vehicle to move (such as staying close to the best fit and the desired heading, or keeping
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it from jerking the steering wheel too quickly). The optimization considers a finite horizon, and the

number of discrete points in time that the optimizer uses in its plan, as well as the time gap between

them can be tuned in order to compute the best plan within a reasonable amount of time (minimize

latency). The optimizer requires a massive one-dimensional vector that includes state variables and

constraints on each for each time step in the plan, along with the overall cost function.

Since the variables for future time steps depend on previous time steps, their constraints make use

of the vehicle’s kinematic model. The kinematic model includes the vehicle’s x and y coordinates,

orientation angle (psi), and velocity, as well as the cross-track error and psi error (epsi). Actuator

outputs are just acceleration and delta (steering angle). As stated, this model can be obtained via

system identification.

MPC is very similar to another sophisticated control algorithm, the linear-quadratic regulator (LQR).

The main differences between MPC and LQR are that LQR optimizes in a fixed time window (horizon)

whereas MPC optimizes in a receding time window, and that a new solution is computed often whereas

LQR uses the single (optimal) solution for the whole time horizon. Therefore, MPC allows real-time

optimization against hard constraints, although it typically solves the optimization problem in smaller

time windows than the whole horizon and hence obtains a suboptimal solution [33].

2.6 Planning

Path planning is the brains of a self-driving car. It’s how a vehicle decides how to get where it’s going,

both at the macro and micro levels. The three core components of path planning are: environmental

prediction, behavior planning, and trajectory generation.

2.6.1 Environmental Prediction

Environmental prediction involves predicting what other vehicles around you will do next. Model-

based approaches decide which of several distinct maneuvers a vehicle might be undertaking. Data-

driven approaches use training data to map a vehicle’s behavior to what we’ve seen other vehicles do

in the past. Hybrid approaches combine models and data to predict where other vehicles will go next.

As discussed, with the sensor fusion data, objects can be tracked from the vehicle’s perspective.

Therefore, with a motion model selected, a set of rough predicted trajectories can be generated for

each of the other vehicles on the road. Furthermore, sensor fusion data can be used to predict one’s

own vehicle’s state (position, velocity, and acceleration), which can be projected out into the future to

generate smoother transitions and handle latency.

2.6.2 Behavior Planning

Behavior planning involves choosing what maneuver to perform. Finite state machines (FSM) are

built to represent all of the different possible maneuvers the vehicle could choose [27]. For example,
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the FSM might include accelerate, decelerate, shift left, shift right, and continue straight. Then, a cost

function will be constructed that assigns a cost to each maneuver, and chooses the lowest-cost option.

Each available state is given a target end state based on the current state and the traffic prediction.

Trajectories are then produced for each available state and target, and each trajectory is evaluated

according to a set of cost functions, with the trajectory with the lowest cost selected. Examples of

cost functions which might be used are collision cost, which penalizes a trajectory that collides with

any predicted traffic trajectories, buffer cost, which penalizes a trajectory that comes within a certain

distance of another traffic vehicle trajectory, in-lane buffer cost, which penalizes driving in lanes

with relatively nearby traffic, efficiency cost, which penalizes trajectories with lower target velocity,

and not-middle-lane cost, which penalizes driving in any lane other than the center in an effort to

maximize available state options.

2.6.3 Trajectory Generation

Trajectory generation involves building candidate trajectories for the vehicle to follow. The trajectory

which maximally minimizes the defined cost function will be chosen. The trajectories generated in

vehicle planning are jerk-minimized trajectories. Jerk is the change in acceleration over time, which

can make for an uncomfortable ride. Jerk-minimized trajectories are polynomial trajectories (ex -

quintic) which minimize the total jerk by minimizing the integral over the third squared derivative of

location [17].

2.6.4 Reinforcement Learning

Machine learning algorithms can be classified into three paradigms: supervised, unsupervised, and

reinforcement learning [14]. Unsupervised learning algorithms experience a dataset containing many

features, then learn useful properties of the structure of this dataset. Typical tasks include density

estimation, denoising, and clustering. Supervised learning algorithms experience a dataset containing

features, but each example is also associated with a label or target. Roughly speaking, unsupervised

learning involves observing several examples of a random vector x, and attempting to implicitly or

explicitly learn a probability distribution p(x), or some interesting properties of that distribution,

while supervised learning involves observing several examples of a random vector x and an associated

value or vector y, and learning to predict y from x, usually by estimating p(y|x). The term supervised

learning originates from the view of the target y being provided by an instructor or teacher who shows

the machine learning system what to do. In unsupervised learning, there is no instructor or teacher,

and the algorithm must learn to make sense of the data without this guide.

Some machine learning algorithms do not just experience a fixed dataset. Reinforcement learning

algorithms interact with an environment, so there is a feedback loop between the learning system

and its experiences. A reward function is designed to give positive feedback for “good” actions and
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negative feedback for “bad” actions. The goal is to learn a policy mapping environmental states to

agent actions which maximizes long-term rewards. Two central problems of reinforcement learning

are the credit assignment problem and the exploration vs exploitation trade-off. As rewards are

not given for every state-action pair, credit needs to be divided between the multiple state-action

pairs preceding them. Furthermore, by simply attempting to maximize rewards, the agent can fall

into the trap of solely exploiting the known information about the environment, therefore finding a

local optimum, but missing the global optimum due to not exploring the environment. Both of these

problems need to be resolved effectively for training a successful reinforcement learning agent.

Reinforcement learning is utilized instead of supervised learning when the state space is too large for

it to be represented by a fixed dataset. This is clearly applicable to path planning, where the goal is to

plan behavior in the presence of unpredictable behavior from other drivers. Using a set of fixed cost

functions to decide between candidate trajectories relies upon deterministic motion models assumed

upon the other vehicles, which can fail in edge cases due to humans’ unpredictable behavior.

Assuming these edge cases occur rarely, safety methods can be implemented to handle them. However,

in reality, humans behave unpredictably relatively frequently, performing unexpected actions of

varying levels of significance often, but human agents are still able to handle them. Under this

pretense, a reinforcement learning framework is clearly a more natural approach to the navigation

problem. By interacting with the environment, humans were able to handle this apparent stochasticity

which cannot be learned using a rule-based approach, so one can hope trained agents would be able

to succeed by doing the same. Given this motivation, active research has commenced for applying

reinforcement learning techniques in this application [29].

3 Related Work

Self-driving vehicles have quite a lot of push and hype around them, so there is a large amount

of active work being done. Most of this active work is within the realm of artificial intelligence,

principally being able to use the power of deep learning to autonomously control the vehicle solely

using camera modules, to avoid the need to fuse other bulky and expensive sensor modalities or even

implement a control module. However, as large companies are competing for the chance to be the

first to bring a fully self-driving car to market, little research has been published from industry. A few

exceptions will be presented.

In a paper by NVIDIA engineers released in 2016, titled “End to End Learning for Self-driving

Cars” [6], the concept of behavioral cloning was introduced. NVIDIA researchers demonstrated that

they were able to train a convolutional neural network to map raw pixels from a single front-facing

camera directly to steering commands, an end-to-end approach which forgoes a control system

entirely. With minimum training data from humans, the system learns to drive in traffic on local roads

23



with or without lane markings and on highways. It also operates in areas with unclear visual guidance

such as in parking lots and on unpaved roads.

The system automatically learns internal representations of the necessary processing steps such as

detecting useful road features with only the human steering angle as the training signal. Compared to

explicit decomposition of the problem, such as lane marking detection, path planning, and control,

the end-to-end system optimizes all processing steps simultaneously. The researchers argue that

this will eventually lead to better performance and smaller systems. Better performance will result

because the internal components self-optimize to maximize overall system performance, instead of

optimizing human-selected intermediate criteria, e.g., lane detection. Such criteria understandably are

selected for ease of human interpretation which doesn’t automatically guarantee maximum system

performance. Smaller networks are possible because the system learns to solve the problem with the

minimal number of processing steps.

Figure 10: Training the neural network

The block diagram for their training system is shown in Figure 10. During training, three cameras

are mounted behind the windshield of the data-acquisition car, in order to have further variance

in the images to show the car in different shifts from the center of the lane and rotations from the

direction of the road. Once trained, the network can generate steering from the video images of a

single center camera. The final CNN architecture can be seen in Figure 11. The network has about 27

million connections and 250 thousand parameters. Evaluation was conducted both in simulation and

in on-road tests, where the vehicle succeeded in the situations presented to it [6].

Ford has also presented research in this field, albeit less ambitious than NVIDIA, focusing on lane

position estimation as opposed to behavioral cloning. An approach was presented to estimate lane

positions directly using a deep neural network that operates on images from laterally-mounted

down-facing cameras. Besides the ability to distinguish whether there is a lane-marker present or

not, the proposed network is able to estimate the position of a lane marker with sub-centimeter

accuracy at an average of 100 frames/s on an embedded automotive platform, requiring no pre- or

post-processing [15].
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Figure 11: CNN Architecture

As discussed, in the fields of control and planning, the utilization of reinforcement learning has been

focused on, but the current experimental results are lacking. Furthermore, in the presence of a known

or unknown map, recent research has mainly focused on successfully tackling the navigation problem

without using SLAM, rather than outperforming the state-of-the-art algorithm. For example, the

leading paper on this subject was released by Google Deepmind in 2017, titled “Learning to Navigate

in Complex Environments” [24]. They formulated the navigation question as a reinforcement learning

problem; rather than following conventional robotics methods such as SLAM which tackle navigation

through an explicit focus on position inference and mapping, they propose that navigational abilities

could emerge as a by-product of an agent learning a policy that maximizes reward. They cite

that the advantage to using an intrinsic, end-to-end approach is that actions are not divorced from

representation, but rather learned together, thus ensuring that task-relevant features are present in

the representation. Sadly, the results were a bit underwhelming; the agents were only evaluated in

simulation and a comparison was only made to previous reinforcement learning approaches to the

problem but not to the state-of-the-art conventional techniques [24].

Researchers have also specified the navigation problem to the autonomous driving problem, where

a map is typically known, motivated by the difficulty of approaching the navigation problem using

solely supervised learning, due to the strong interactions with the environment, which include other

vehicles, pedestrians, and roadworks. The results were again underwhelming, as the framework was

only tested in an open source 3D car racing simulator called TORCS [13]. Research into applying
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reinforcement learning for planning the navigation of self-driving cars is still in its early stages, but

preliminary signs indicate that this is a promising application of the science.

4 Project Description

The goal of our project is to build a system which enables a vehicle to navigate a model of a real-world

street map. The basis for such a system is lane keeping, the ability to stay within a lane. However,

real-world street maps are more than many lanes concatenated together; they incorporate intersections,

which is what a navigation system handles. We will describe the lane keeping and navigation systems,

as well as the software architecture, in this section.

4.1 Lane Keeping System

Figure 12: System Diagram

A simplistic diagram of our proposed system can be seen in Figure 12. An input image will be fed to

our perception module, which will output the cross-track error. The cross-track error will then be fed

to the control module which will output motor commands that actuate the vehicle’s motors, change

its state, and yield a new input image for the system to operate upon. As discussed, the goal of the

system is to perform lane keeping qualitatively, and quantitatively minimize the average cross-track

error throughout the time horizon.

In our system diagram, the input image is represented by an image from a front-facing camera. This

is because in our system, a single front-facing camera is our only sensor modality. In addition, the

output of our perception module which serves as input to the control module is solely the cross-track

error. This is because we are using a PID controller for actuating our motors.

4.1.1 Perception Module

In order to detect edges in the images, we applied Canny edge detection, due to its robustness. An

example of its application to a sample image is shown in Figure 13. Clearly, it works very well at

detecting edges, and hence it’s a part of our pipeline. We then applied a perspective transform to gain

a birds-eye view of the lanes. Depending on the size of the source quadrangle specified, a birds-eye

view of a larger segment of the lanes is seen. This is important for avoiding latency problems by

providing a look-ahead to the control algorithm.
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Figure 13: Canny edge detection

To detect lane lines, we compute a histogram on the bottom of the image, with the peaks on the left

and right halves giving us a good estimate of where the lane lines start. We then search small windows

starting from the bottom and essentially follow the lane lines all the way to the top until all pixels

in each line are identified. Finally, a polynomial curve is applied to the identified pixels, yielding

the lane lines. As the vehicle moves, the search continues online. The histogram is recomputed after

intersections. The sliding window size was tuned to be the minimal size needed to still detect the

lane of maximal curvature. In order to handle cases where the vehicle is at an angle and thus in the

original image one or both of the lanes start at the left or right edges, if less than two peaks are found

when computing the histogram on the bottom edge, the left and right edges are then searched for

starting points.

Finally, with the lane lines detected, the cross-track error (CTE) needs to be computed to serve as

input to the control algorithm. With the birds-eye view, finding the CTE is simple. As the camera is

centered on the vehicle, the middle of the image is the car position, and the midpoint between the

detected lanes is the center point. If only a single lane is seen, the midpoint is taken between the

detected lane and the opposite edge. The difference between the midpoint and the car position is the

cross-track error. As discussed, one can define the lookahead based upon how far ahead the cross-

track error is found. We find the cross-track error at the topmost point of the perspective transform

output, therefore we can vary the lookahead by expanding or downsizing the source quadrangle over

which we take the perspective transform.

An example of the perspective transform output and our final results, with the detected lane lines and

CTE estimated, is shown in Figure 14. The yellow line in the final image is our attempt at fitting a

polynomial line to serve as the center trajectory, in order to smooth CTE transitions. The polynomial

fit fails when only one lane is seen; therefore in our final system, we solely applied a large lookahead

to stabilize the system.
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Figure 14: Perspective Transform & Detected Lane Lines and CTE

4.1.2 Control Module

As discussed, the algorithm we are using for our control module is a PID controller operating on

the CTE. The full mathematical form of the PID controller is defined as being u(t) = Kpe(t) +

Ki

∫ t

ti
e(τ)dτ +Kd

de(t)
dt where each of the additive terms are respectively the proportional, integral,

and derivative terms, e(t) is the error (CTE), and u(t) represents the output control variable that

should be adjusted. The proportional, integral, and derivative terms of the PID controller are used to

adjust the output control variable by an amount proportional to the error, sum of past errors, and the

rate of change of the error over time, respectively. The weights for each of these terms need to be

tuned in order to optimize performance.

We were able to easily lane keep to a straight line by simply increasing the proportional gain, thus the

real challenge was tuning the PID parameters in order to keep to curved lanes, in particular the lane

of maximal curvature. In order to do this, we used the Ziegler-Nichols method, and after a reasonable

number of tuning iterations, we were able to succeed with the following parameters: Kp = 1.50,

Kd = 0.20, and Ki = 0.02.

4.2 Navigation System

The challenge of navigating a map becomes exponentially easier when the map is known. In the real

world, vehicles are typically equipped with GPS, which informs the driver of the topology of the

road network, and localizes one’s own vehicle within the map at a resolution sufficient enough for

preparing the vehicle for incoming turns and intersections, but not sufficient enough for localizing

other vehicles.

As GPS cannot be used indoors, we provide the vehicle with map information. We enable the vehicle

to navigate from a specified source to a destination by using the map information to plan a path. This

is input to the navigation system by specifying the decision (straight, left, right) to be made at each

intersection in the path. A code is given for each lane segment in the map, which is used by the user

to specify the source location and the desired destination.
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4.2.1 Intersections

Figure 15: An example of a intersection situation in our map

An example of an “intersection” can be seen in Figure 15. This intersection might look odd, since

typical intersections on real-world roads are box-shaped. This wasn’t possible in our setting as the

reason why vehicles can safely turn at such junctures is due to the fact that real-world roads are

multi-lane. With this, vehicles can safely enter the center in order to curve into the appropriate left or

right lane. In a single-lane road, turns at box-shaped intersections would require 90° shifts, which is

hardly reasonable. Therefore, we gave each edge a level of curvature, enabling curved trajectories on

a single-lane intersection.

Handling intersections reduces to the navigation system’s ability to detect the intersection, and

instruct the vehicle with the necessary motor commands needed to safely lane keep. An intersection

can be detected by simply seeing when the tracked lane lines break. Furthermore, histograms are

computed on the perspective transform output, enabling the detection of the curved edges. The source

quadrangle is sized such that the curved edges are present in the birds-eye view. If the specified

direction is “straight”, the desired trajectory is the vector mean of the directions perpendicular to the

detected turn edges. On the other hand, if the path planner instructs the vehicle to make a turn, lane

keeping is conducted with the associated curved edge. As the standardized lane width distance is

given to the system, the desired trajectory is simply the detected edge + a lane_width
2 offset. The lane

width was set to 6 inches in our map.
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Figure 16: Multi-threaded Architecture

4.3 Software Architecture

In order to minimize the latency, we decided to move away from a sequential pipeline and move

towards a multithreaded architecture. A simple diagram detailing it can be seen in Figure 16.

Our multithreaded architecture is the following. We have a startup script, which instantiates 3 classes:

Lane_Detection, Plot, and Control. First, the infinite loop for lane detection is started in a thread,

taking in a continuous stream of images via the Raspberry Pi camera module and applying the

perception pipeline, outputting the detected lanes and the cross-track error. The detected lanes are

sent to the Plot class, while the CTE is sent to the Control class, via pipes. So, after a short delay (to

make sure we have at least one set of detected lanes and a CTE estimate), we then instantiate the plot

and control threads. The control thread takes the current CTE variable value and converts that into

power to the left and right motors, which is then sent to the Arduino (via serial connection) to power

the motors. The plot thread gives a continuous view on the intermediate outputs of the perception

pipeline in real-time.

5 Results and Evaluation

5.1 Experimental Setup

5.1.1 Vehicle

In order to test a lane keeping and navigation assist system, a vehicle is needed. For our first round of

testing, we constructed a prototype, which can be seen in Figure 17. This initial vehicle was designed

in SolidWorks, and subsequently 3D printed in parts. As specified in the figure, the components

included in the initial prototype are an Arduino Uno for motor control, a Raspberry Pi 3 for on-board

processing, an L298D motor driver, a front-facing Pi Camera module, and motors to move the wheels.

Separate battery packs are included for the Arduino, Pi, and the motor driver. To properly house the

electronic components, the initial prototype was designed to have a two tier setup. The top tier was

used to hold the Arduino Uno and the bottom tier was used to hold the Raspberry Pi. To create more
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Figure 17: Our vehicle prototype, with hardware components labeled

storage room, an additional slot was included under the base of the vehicle. Here, in this slot, the

primary battery pack, used for powering the Pi, was stored. Space in the back of the vehicle was also

created for placing the motor driver and additional battery packs.

The vehicle was designed so it would be 2WD. The vehicle is run off the back two wheels, and the

back axle is propelled by the motor, making the driving system “rear-wheel drive”. Rear-wheel drive

was chosen as its balance and acceleration advantages are crucial to keeping to curved lanes. The

steering mechanism is implemented with differential steering, distributing different levels of power to

each wheel in order to steer.

The initial prototype described here was primarily used during the first semester for lane keeping.

After using this vehicle during the course of the first semester, we were able to gain insight into

modifications that were required for the second semester. The main modifications that had to be made

included creating a better structure to hold the camera firmly in place, changing the existing 3V 30

rpm motors with 3V 15 rpm motors, readjusting the the position of components within the tiered

system, and finally making the the car more aesthetically pleasing.

In order to mount the camera module appropriately on the car, an additional laser cut beam was used

to provide further structural support. This added support gave us the ability to the tilt the camera

further toward the ground and enabled us to fix the camera to one set spot during each iteration of

testing. Next, we changed out the existing 3V 30 rpm motors with 3V 15 rpm motors. Lower rpm

motors have higher torque. Therefore, using 15 rpm motors will improve the steering mechanism of

the vehicle and thus allow us to navigate more smoothly through lanes that have higher curvature.

Next, we switched the location of the Raspberry Pi and Arduino Uno within our two-tiered system.

Before, the Raspeberry Pi was housed in the bottom tier and the Arduino Uno was on the top. In

our final prototype these two pieces were switched so that the load onboard the vehicle was more

balanced. Finally, we printed out the car in a dark brown color so that it would be aesthetically

pleasing and so that it would look like a finished product.

31



5.1.2 Lane Configurations

Figure 18: An example of a curved lane used for testing

We designed our lanes as follows: For left curved lanes of angle θ, we draw a straight line from the

bottom-right vertex to the left edge so the angle between the line at the bottom edge is θ. For right

curved lanes of angle θ, we draw a straight line from the bottom-left vertex to the right edge so the

angle between the line at the bottom edge is θ. We then fit the two vertices with a curve. We found

the minimal realistic θ for lane keeping to be 40°, and thus we constructed left and right lanes at 60°,

50°, and 40°. For our initial lane keeping tests, we taped the configured lanes to posterboard, as seen

in Figure 18.

5.1.3 Navigation Map

Figure 19: Representation of our map design

Figure 19 details a labeled diagram of our navigation map. The map’s size is 20 feet by 10 feet (width

x height). The curves were fit with 60% bezier curves, where a 100% curve corresponds to a 90°

(right) angle, and a 0% curve corresponds to a diagonal line. As can be seen, the map is composed of

all of our tested lane configurations.
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5.2 Results

Qualitatively, we were able to verify that the vehicle was successful at navigating the map and was

able to keep within each lane configuration. Please view the demo video at the following link 1.

For quantitative results, we decided to setup our perception code on an overhead camera, continuously

measuring the CTE for all lane configurations and turns. As an overhead camera view should give a

better estimate for the CTE than a front-facing camera, we used its CTE measurements as the ground

truth. We measured the magnitude of the CTE via the overhead camera for 5 vehicle runs on each

lane configuration, uniformly sampling 50 points on the lane and averaging the CTE results, then

finally averaged the CTE results across runs. The results are shown in Figure 20.

Figure 20: Quantitative Results

For reference, we found the distance between the lanes in pixels from our overhead view at a fixed

altitude to be 80. Therefore, a CTE measure of 40 indicates the vehicle is riding the lane marker.

As expected, the lowest CTE was yielded when keeping to the straight line, but more interestingly,

decreasing θ appears to significantly increase the difficulty in performing at the lane keeping task.

1https://www.youtube.com/watch?v=SnWBqAnbh2Q

33



6 Conclusion

The goal for our senior project was to build a lane keeping and navigation assist system which can

enable a vehicle to navigate a model of a real-world street map. The motivation behind this project

is the rapid progress in self-driving cars. As most active research in self-driving cars has been for

commercial applications, there is little research on the state-of-the-art in the field, making this senior

project full of exploration. Our goal for the fall semester was to complete lane keeping, and our goal

for the spring semester was to demonstrate navigation and explore handling additional complexity to

our controlled environment.

Accomplishing these goals was a very ambitious task. As a group consisting of 2 electrical engineers,

there were many mechanical problems we had to handle throughout this semester which we were

inexperienced in. Even so, by the end of the year, we were able to succeed. Our demo video indicating

that is available at the following link 2

Section 2 consisted of an extensive background section, where details regarding the key systems

of a self-driving car were provided. In Section 2.2, camera calibration for undistorting pinhole

camera images, the perspective transform for yielding a birds-eye view of a source quadrangle,

edge detection algorithms such as the Sobel operator and Canny edge detection, and the science of

machine learning, deep learning, and its application in perception, were all discussed. In Section

2.3, non-camera modalities such as LIDAR and RADAR, sensor fusion methods such as the Kalman

filter, its extensions, and the particle filter, and using such methods for solving the localization and

mapping tasks were discussed. In Section 2.4, differential steering and 2-wheel drive were discussed.

In Section 2.5, the classic PID controller and the more advanced model predictive control algorithms

were discussed. Finally, in Section 2.6, the details in the previous section were tied together through

discussing the environmental prediction, behavior planning, and trajectory generation tasks required

for navigating. Furthermore, the application of reinforcement learning to the navigation tasks was

motivated, by presenting early research results.

As explained in Section 3, recently, researchers have consistently focused on artificial intelligence

applications in autonomous driving. Therefore, research on applications of deep learning and

reinforcement learning in this field were presented. Without a doubt, the most impressive recent

research work has been the introduction of behavioral cloning by NVIDIA, demonstrating that a

vehicle can navigate not only in simulation but in the real world by training a neural network to map

raw pixels from a front-facing camera directly to steering commands. This result demonstrates the

power of deep learning and machine learning in general, indicating that focusing on AI is certainly a

promising direction of research.

2https://www.youtube.com/watch?v=SnWBqAnbh2Q
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In Section 4, our lane keeping system, navigation system, and software architecture were presented.

Our lane keeping system is composed of perception and control modules interacting with the vehicle

in a feedback loop. The following cycle continuously takes place: the front-facing camera takes an

image, the perception module yields the cross-track error, and the control module yields the motor

commands which would propel the vehicle forward. The perception module consists of detecting the

edges in the image, acquiring a birds-eye view of the lanes, detecting the lane lines with a sliding

window approach, and computing the error between the car position and the midpoint between the

lanes. The PID controller is tuned to minimize that error. For navigation, map information is provided

to the system to allow a path to be planned between a specified source and destination. Turns are

handled by appropriately lane keeping to the intersection’s curved edge, which is required due to the

single-lane nature of our map. To minimize latency, the described systems have been implemented in

a multithreaded software architecture.

In Section 5, we detailed our experimental setup and our qualitative and quantitative results. In

order to experiment, we built a test vehicle and printed out a map consisting of lane configurations

with varying levels of curvature, where the curvature was tuned with the θ parameter. Qualitatively,

we verified that the vehicle was capable of navigating the map while staying within the lane lines,

while our quantitative results indicate that increasing the curvature scales up the difficulty of the lane

keeping task considerably.

We believe adding real-world complexities to our controlled environment, and enabling the system to

navigate under environmental noise and with dynamic obstacles (other vehicles) present, is certainly

a valuable direction for future work. We were able to verify in our experiments that the system can

handle mild noise. For example, placing receipts and brown napkins on the curved lanes, which

contrast with the background, doesn’t cause the vehicle to falter. However, adding true real-world

noise to the physical environment can only be done by transitioning to the real world, which isn’t

possible for our miniature vehicle which has been tuned to handle a single-lane map. Furthermore,

adding dynamic obstacles, such as other vehicles, would involve building other vehicles and expanding

the map to consist of two-lane roads. In short, handling these complexities added not in simulation

but to the physical experimental setup is nontrivial, but taking this next step would bring this system

one step further to becoming a true real-world self-driving car system.
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